- Timestamp:
- 09/14/09 18:43:04 (15 years ago)
- Location:
- trunk/sources
- Files:
-
- 1 added
- 4 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/sources/HeuristicLab.GP.StructureIdentification.Classification/3.3/DefaultClassificationAlgorithmOperators.cs
r2351 r2353 28 28 29 29 namespace HeuristicLab.GP.StructureIdentification.Classification { 30 internalstatic class DefaultClassificationAlgorithmOperators {31 internalstatic IOperator CreatePostProcessingOperator() {30 public static class DefaultClassificationAlgorithmOperators { 31 public static IOperator CreatePostProcessingOperator() { 32 32 SequentialProcessor seq = new SequentialProcessor(); 33 33 seq.AddSubOperator(DefaultStructureIdentificationAlgorithmOperators.CreatePostProcessingOperator()); … … 58 58 } 59 59 60 internalstatic IOperator CreateProblemInjector() {60 public static IOperator CreateProblemInjector() { 61 61 CombinedOperator op = new CombinedOperator(); 62 62 op.Name = "ProblemInjector"; … … 69 69 } 70 70 71 internalstatic void SetModelData(IAnalyzerModel model, IScope scope) {71 public static void SetModelData(IAnalyzerModel model, IScope scope) { 72 72 model.SetResult("TrainingAccuracy", scope.GetVariableValue<DoubleData>("TrainingAccuracy", true).Data); 73 73 model.SetResult("ValidationAccuracy", scope.GetVariableValue<DoubleData>("ValidationAccuracy", true).Data); -
trunk/sources/HeuristicLab.LinearRegression/3.2/HeuristicLab.LinearRegression-3.2.csproj
r2324 r2353 91 91 <Compile Include="alglib\spline3.cs" /> 92 92 <Compile Include="alglib\svd.cs" /> 93 <Compile Include="LinearClassification.cs" /> 93 94 <Compile Include="HeuristicLabLinearRegressionPlugin.cs" /> 94 95 <Compile Include="LinearRegression.cs" /> … … 120 121 <Project>{924B6BEA-9A99-40FE-9334-5C01E8D540EC}</Project> 121 122 <Name>HeuristicLab.GP.Interfaces-3.3</Name> 123 </ProjectReference> 124 <ProjectReference Include="..\..\HeuristicLab.GP.StructureIdentification.Classification\3.3\HeuristicLab.GP.StructureIdentification.Classification-3.3.csproj"> 125 <Project>{7C20D100-8BEB-433A-9499-F075E2CB9297}</Project> 126 <Name>HeuristicLab.GP.StructureIdentification.Classification-3.3</Name> 127 </ProjectReference> 128 <ProjectReference Include="..\..\HeuristicLab.GP.StructureIdentification.TimeSeries\3.3\HeuristicLab.GP.StructureIdentification.TimeSeries-3.3.csproj"> 129 <Project>{6084CFB5-733F-449D-9F92-2E40D13F0514}</Project> 130 <Name>HeuristicLab.GP.StructureIdentification.TimeSeries-3.3</Name> 122 131 </ProjectReference> 123 132 <ProjectReference Include="..\..\HeuristicLab.GP.StructureIdentification\3.3\HeuristicLab.GP.StructureIdentification-3.3.csproj"> -
trunk/sources/HeuristicLab.LinearRegression/3.2/HeuristicLabLinearRegressionPlugin.cs
r2324 r2353 24 24 using HeuristicLab.PluginInfrastructure; 25 25 26 namespace HeuristicLab.LinearRegression {26 namespace HeuristicLab.LinearRegression { 27 27 [ClassInfo(Name = "HeuristicLab.LinearRegression-3.2")] 28 28 [PluginFile(Filename = "HeuristicLab.LinearRegression-3.2.dll", Filetype = PluginFileType.Assembly)] … … 35 35 [Dependency(Dependency = "HeuristicLab.GP.Interfaces-3.3")] 36 36 [Dependency(Dependency = "HeuristicLab.GP.StructureIdentification-3.3")] 37 [Dependency(Dependency = "HeuristicLab.GP.StructureIdentification.Classification-3.3")] 38 [Dependency(Dependency = "HeuristicLab.GP.StructureIdentification.TimeSeries-3.3")] 37 39 [Dependency(Dependency = "HeuristicLab.Modeling-3.2")] 38 40 [Dependency(Dependency = "HeuristicLab.Random-3.2")] -
trunk/sources/HeuristicLab.LinearRegression/3.2/LinearRegression.cs
r2344 r2353 39 39 public class LinearRegression : ItemBase, IEditable, IAlgorithm { 40 40 41 public string Name { get { return "LinearRegression"; } }42 public string Description { get { return "TODO"; } }41 public virtual string Name { get { return "LinearRegression"; } } 42 public virtual string Description { get { return "TODO"; } } 43 43 44 44 private SequentialEngine.SequentialEngine engine; 45 public IEngine Engine {45 public virtual IEngine Engine { 46 46 get { return engine; } 47 47 } 48 48 49 public Dataset Dataset {49 public virtual Dataset Dataset { 50 50 get { return ProblemInjector.GetVariableValue<Dataset>("Dataset", null, false); } 51 51 set { ProblemInjector.GetVariable("Dataset").Value = value; } 52 52 } 53 53 54 public int TargetVariable {54 public virtual int TargetVariable { 55 55 get { return ProblemInjector.GetVariableValue<IntData>("TargetVariable", null, false).Data; } 56 56 set { ProblemInjector.GetVariableValue<IntData>("TargetVariable", null, false).Data = value; } 57 57 } 58 58 59 public IOperator ProblemInjector {59 public virtual IOperator ProblemInjector { 60 60 get { 61 61 IOperator main = GetMainOperator(); … … 69 69 } 70 70 71 public IAnalyzerModel Model {71 public virtual IAnalyzerModel Model { 72 72 get { 73 73 if (!engine.Terminated) throw new InvalidOperationException("The algorithm is still running. Wait until the algorithm is terminated to retrieve the result."); … … 84 84 } 85 85 86 pr ivateCombinedOperator CreateAlgorithm() {86 protected virtual CombinedOperator CreateAlgorithm() { 87 87 CombinedOperator algo = new CombinedOperator(); 88 88 SequentialProcessor seq = new SequentialProcessor(); … … 121 121 } 122 122 123 pr ivate IOperator CreateGlobalInjector() {123 protected virtual VariableInjector CreateGlobalInjector() { 124 124 VariableInjector injector = new VariableInjector(); 125 125 injector.AddVariable(new HeuristicLab.Core.Variable("PunishmentFactor", new DoubleData(1000))); … … 129 129 } 130 130 131 private IOperator CreateModelAnalyser() { 132 CombinedOperator modelAnalyser = new CombinedOperator(); 133 modelAnalyser.Name = "Model Analyzer"; 134 SequentialProcessor seqProc = new SequentialProcessor(); 135 #region MSE 136 MeanSquaredErrorEvaluator trainingMSE = new MeanSquaredErrorEvaluator(); 137 trainingMSE.Name = "TrainingMseEvaluator"; 138 trainingMSE.GetVariableInfo("FunctionTree").ActualName = "LinearRegressionModel"; 139 trainingMSE.GetVariableInfo("MSE").ActualName = "TrainingQuality"; 140 trainingMSE.GetVariableInfo("SamplesStart").ActualName = "ActualTrainingSamplesStart"; 141 trainingMSE.GetVariableInfo("SamplesEnd").ActualName = "ActualTrainingSamplesEnd"; 142 MeanSquaredErrorEvaluator validationMSE = new MeanSquaredErrorEvaluator(); 143 validationMSE.Name = "ValidationMseEvaluator"; 144 validationMSE.GetVariableInfo("FunctionTree").ActualName = "LinearRegressionModel"; 145 validationMSE.GetVariableInfo("MSE").ActualName = "ValidationQuality"; 146 validationMSE.GetVariableInfo("SamplesStart").ActualName = "ValidationSamplesStart"; 147 validationMSE.GetVariableInfo("SamplesEnd").ActualName = "ValidationSamplesEnd"; 148 MeanSquaredErrorEvaluator testMSE = new MeanSquaredErrorEvaluator(); 149 testMSE.Name = "TestMseEvaluator"; 150 testMSE.GetVariableInfo("FunctionTree").ActualName = "LinearRegressionModel"; 151 testMSE.GetVariableInfo("MSE").ActualName = "TestQuality"; 152 testMSE.GetVariableInfo("SamplesStart").ActualName = "TestSamplesStart"; 153 testMSE.GetVariableInfo("SamplesEnd").ActualName = "TestSamplesEnd"; 154 #endregion 131 protected virtual IOperator CreateModelAnalyser() { 132 CombinedOperator op = new CombinedOperator(); 133 op.AddVariableInfo(new VariableInfo("FunctionTree", "The model to analyze", typeof(IGeneticProgrammingModel), VariableKind.In)); 134 op.Name = "Model Analyzer"; 135 op.GetVariableInfo("FunctionTree").ActualName = "LinearRegressionModel"; 155 136 156 #region R2 157 CoefficientOfDeterminationEvaluator trainingR2 = new CoefficientOfDeterminationEvaluator(); 158 trainingR2.Name = "TrainingR2Evaluator"; 159 trainingR2.GetVariableInfo("FunctionTree").ActualName = "LinearRegressionModel"; 160 trainingR2.GetVariableInfo("R2").ActualName = "TrainingR2"; 161 trainingR2.GetVariableInfo("SamplesStart").ActualName = "ActualTrainingSamplesStart"; 162 trainingR2.GetVariableInfo("SamplesEnd").ActualName = "ActualTrainingSamplesEnd"; 163 CoefficientOfDeterminationEvaluator validationR2 = new CoefficientOfDeterminationEvaluator(); 164 validationR2.Name = "ValidationR2Evaluator"; 165 validationR2.GetVariableInfo("FunctionTree").ActualName = "LinearRegressionModel"; 166 validationR2.GetVariableInfo("R2").ActualName = "ValidationR2"; 167 validationR2.GetVariableInfo("SamplesStart").ActualName = "ValidationSamplesStart"; 168 validationR2.GetVariableInfo("SamplesEnd").ActualName = "ValidationSamplesEnd"; 169 CoefficientOfDeterminationEvaluator testR2 = new CoefficientOfDeterminationEvaluator(); 170 testR2.Name = "TestR2Evaluator"; 171 testR2.GetVariableInfo("FunctionTree").ActualName = "LinearRegressionModel"; 172 testR2.GetVariableInfo("R2").ActualName = "TestR2"; 173 testR2.GetVariableInfo("SamplesStart").ActualName = "TestSamplesStart"; 174 testR2.GetVariableInfo("SamplesEnd").ActualName = "TestSamplesEnd"; 175 #endregion 176 177 #region MAPE 178 MeanAbsolutePercentageErrorEvaluator trainingMAPE = new MeanAbsolutePercentageErrorEvaluator(); 179 trainingMAPE.Name = "TrainingMapeEvaluator"; 180 trainingMAPE.GetVariableInfo("FunctionTree").ActualName = "LinearRegressionModel"; 181 trainingMAPE.GetVariableInfo("MAPE").ActualName = "TrainingMAPE"; 182 trainingMAPE.GetVariableInfo("SamplesStart").ActualName = "ActualTrainingSamplesStart"; 183 trainingMAPE.GetVariableInfo("SamplesEnd").ActualName = "ActualTrainingSamplesEnd"; 184 MeanAbsolutePercentageErrorEvaluator validationMAPE = new MeanAbsolutePercentageErrorEvaluator(); 185 validationMAPE.Name = "ValidationMapeEvaluator"; 186 validationMAPE.GetVariableInfo("FunctionTree").ActualName = "LinearRegressionModel"; 187 validationMAPE.GetVariableInfo("MAPE").ActualName = "ValidationMAPE"; 188 validationMAPE.GetVariableInfo("SamplesStart").ActualName = "ValidationSamplesStart"; 189 validationMAPE.GetVariableInfo("SamplesEnd").ActualName = "ValidationSamplesEnd"; 190 MeanAbsolutePercentageErrorEvaluator testMAPE = new MeanAbsolutePercentageErrorEvaluator(); 191 testMAPE.Name = "TestMapeEvaluator"; 192 testMAPE.GetVariableInfo("FunctionTree").ActualName = "LinearRegressionModel"; 193 testMAPE.GetVariableInfo("MAPE").ActualName = "TestMAPE"; 194 testMAPE.GetVariableInfo("SamplesStart").ActualName = "TestSamplesStart"; 195 testMAPE.GetVariableInfo("SamplesEnd").ActualName = "TestSamplesEnd"; 196 #endregion 197 198 #region MAPRE 199 MeanAbsolutePercentageOfRangeErrorEvaluator trainingMAPRE = new MeanAbsolutePercentageOfRangeErrorEvaluator(); 200 trainingMAPRE.Name = "TrainingMapreEvaluator"; 201 trainingMAPRE.GetVariableInfo("FunctionTree").ActualName = "LinearRegressionModel"; 202 trainingMAPRE.GetVariableInfo("MAPRE").ActualName = "TrainingMAPRE"; 203 trainingMAPRE.GetVariableInfo("SamplesStart").ActualName = "ActualTrainingSamplesStart"; 204 trainingMAPRE.GetVariableInfo("SamplesEnd").ActualName = "ActualTrainingSamplesEnd"; 205 MeanAbsolutePercentageOfRangeErrorEvaluator validationMAPRE = new MeanAbsolutePercentageOfRangeErrorEvaluator(); 206 validationMAPRE.Name = "ValidationMapreEvaluator"; 207 validationMAPRE.GetVariableInfo("FunctionTree").ActualName = "LinearRegressionModel"; 208 validationMAPRE.GetVariableInfo("MAPRE").ActualName = "ValidationMAPRE"; 209 validationMAPRE.GetVariableInfo("SamplesStart").ActualName = "ValidationSamplesStart"; 210 validationMAPRE.GetVariableInfo("SamplesEnd").ActualName = "ValidationSamplesEnd"; 211 MeanAbsolutePercentageOfRangeErrorEvaluator testMAPRE = new MeanAbsolutePercentageOfRangeErrorEvaluator(); 212 testMAPRE.Name = "TestMapreEvaluator"; 213 testMAPRE.GetVariableInfo("FunctionTree").ActualName = "LinearRegressionModel"; 214 testMAPRE.GetVariableInfo("MAPRE").ActualName = "TestMAPRE"; 215 testMAPRE.GetVariableInfo("SamplesStart").ActualName = "TestSamplesStart"; 216 testMAPRE.GetVariableInfo("SamplesEnd").ActualName = "TestSamplesEnd"; 217 #endregion 218 219 #region VAF 220 VarianceAccountedForEvaluator trainingVAF = new VarianceAccountedForEvaluator(); 221 trainingVAF.Name = "TrainingVafEvaluator"; 222 trainingVAF.GetVariableInfo("FunctionTree").ActualName = "LinearRegressionModel"; 223 trainingVAF.GetVariableInfo("VAF").ActualName = "TrainingVAF"; 224 trainingVAF.GetVariableInfo("SamplesStart").ActualName = "ActualTrainingSamplesStart"; 225 trainingVAF.GetVariableInfo("SamplesEnd").ActualName = "ActualTrainingSamplesEnd"; 226 VarianceAccountedForEvaluator validationVAF = new VarianceAccountedForEvaluator(); 227 validationVAF.Name = "ValidationVafEvaluator"; 228 validationVAF.GetVariableInfo("FunctionTree").ActualName = "LinearRegressionModel"; 229 validationVAF.GetVariableInfo("VAF").ActualName = "ValidationVAF"; 230 validationVAF.GetVariableInfo("SamplesStart").ActualName = "ValidationSamplesStart"; 231 validationVAF.GetVariableInfo("SamplesEnd").ActualName = "ValidationSamplesEnd"; 232 VarianceAccountedForEvaluator testVAF = new VarianceAccountedForEvaluator(); 233 testVAF.Name = "TestVafEvaluator"; 234 testVAF.GetVariableInfo("FunctionTree").ActualName = "LinearRegressionModel"; 235 testVAF.GetVariableInfo("VAF").ActualName = "TestVAF"; 236 testVAF.GetVariableInfo("SamplesStart").ActualName = "TestSamplesStart"; 237 testVAF.GetVariableInfo("SamplesEnd").ActualName = "TestSamplesEnd"; 238 #endregion 239 240 VariableNamesExtractor namesExtractor = new VariableNamesExtractor(); 241 namesExtractor.GetVariableInfo("FunctionTree").ActualName = "LinearRegressionModel"; 242 namesExtractor.GetVariableInfo("VariableNames").ActualName = "InputVariableNames"; 243 PredictorBuilder predictorBuilder = new PredictorBuilder(); 244 predictorBuilder.GetVariableInfo("FunctionTree").ActualName = "LinearRegressionModel"; 245 VariableEvaluationImpactCalculator evalImpactCalc = new VariableEvaluationImpactCalculator(); 246 evalImpactCalc.GetVariableInfo("SamplesStart").ActualName = "ActualTrainingSamplesStart"; 247 evalImpactCalc.GetVariableInfo("SamplesEnd").ActualName = "ActualTrainingSamplesEnd"; 248 VariableQualityImpactCalculator qualImpactCalc = new VariableQualityImpactCalculator(); 249 qualImpactCalc.GetVariableInfo("SamplesStart").ActualName = "ActualTrainingSamplesStart"; 250 qualImpactCalc.GetVariableInfo("SamplesEnd").ActualName = "ActualTrainingSamplesEnd"; 251 seqProc.AddSubOperator(trainingMSE); 252 seqProc.AddSubOperator(validationMSE); 253 seqProc.AddSubOperator(testMSE); 254 seqProc.AddSubOperator(trainingR2); 255 seqProc.AddSubOperator(validationR2); 256 seqProc.AddSubOperator(testR2); 257 seqProc.AddSubOperator(trainingMAPE); 258 seqProc.AddSubOperator(validationMAPE); 259 seqProc.AddSubOperator(testMAPE); 260 seqProc.AddSubOperator(trainingMAPRE); 261 seqProc.AddSubOperator(validationMAPRE); 262 seqProc.AddSubOperator(testMAPRE); 263 seqProc.AddSubOperator(trainingVAF); 264 seqProc.AddSubOperator(validationVAF); 265 seqProc.AddSubOperator(testVAF); 266 seqProc.AddSubOperator(namesExtractor); 267 seqProc.AddSubOperator(predictorBuilder); 268 seqProc.AddSubOperator(qualImpactCalc); 269 seqProc.AddSubOperator(evalImpactCalc); 270 modelAnalyser.OperatorGraph.InitialOperator = seqProc; 271 modelAnalyser.OperatorGraph.AddOperator(seqProc); 272 return modelAnalyser; 137 IOperator maOp = DefaultStructureIdentificationAlgorithmOperators.CreatePostProcessingOperator(); 138 op.OperatorGraph.AddOperator(maOp); 139 op.OperatorGraph.InitialOperator = maOp; 140 return op; 273 141 } 274 142 275 protected internal virtual IAnalyzerModel CreateLRModel(IScope bestModelScope) { 276 IAnalyzerModel model = new AnalyzerModel(); 277 model.Predictor = bestModelScope.GetVariableValue<IPredictor>("Predictor", true); 278 model.SetResult("TrainingMeanSquaredError", bestModelScope.GetVariableValue<DoubleData>("TrainingQuality", false).Data); 279 model.SetResult("ValidationMeanSquaredError", bestModelScope.GetVariableValue<DoubleData>("ValidationQuality", false).Data); 280 model.SetResult("TestMeanSquaredError", bestModelScope.GetVariableValue<DoubleData>("TestQuality", false).Data); 281 model.SetResult("TrainingCoefficientOfDetermination", bestModelScope.GetVariableValue<DoubleData>("TrainingR2", false).Data); 282 model.SetResult("ValidationCoefficientOfDetermination", bestModelScope.GetVariableValue<DoubleData>("ValidationR2", false).Data); 283 model.SetResult("TestCoefficientOfDetermination", bestModelScope.GetVariableValue<DoubleData>("TestR2", false).Data); 284 model.SetResult("TrainingMeanAbsolutePercentageError", bestModelScope.GetVariableValue<DoubleData>("TrainingMAPE", false).Data); 285 model.SetResult("ValidationMeanAbsolutePercentageError", bestModelScope.GetVariableValue<DoubleData>("ValidationMAPE", false).Data); 286 model.SetResult("TestMeanAbsolutePercentageError", bestModelScope.GetVariableValue<DoubleData>("TestMAPE", false).Data); 287 model.SetResult("TrainingMeanAbsolutePercentageOfRangeError", bestModelScope.GetVariableValue<DoubleData>("TrainingMAPRE", false).Data); 288 model.SetResult("ValidationMeanAbsolutePercentageOfRangeError", bestModelScope.GetVariableValue<DoubleData>("ValidationMAPRE", false).Data); 289 model.SetResult("TestMeanAbsolutePercentageOfRangeError", bestModelScope.GetVariableValue<DoubleData>("TestMAPRE", false).Data); 290 model.SetResult("TrainingVarianceAccountedFor", bestModelScope.GetVariableValue<DoubleData>("TrainingVAF", false).Data); 291 model.SetResult("ValidationVarianceAccountedFor", bestModelScope.GetVariableValue<DoubleData>("ValidationVAF", false).Data); 292 model.SetResult("TestVarianceAccountedFor", bestModelScope.GetVariableValue<DoubleData>("TestVAF", false).Data); 293 294 IGeneticProgrammingModel gpModel = bestModelScope.GetVariableValue<IGeneticProgrammingModel>("LinearRegressionModel", false); 295 model.SetMetaData("TreeSize", gpModel.Size); 296 model.SetMetaData("TreeHeight", gpModel.Height); 297 298 HeuristicLab.DataAnalysis.Dataset ds = bestModelScope.GetVariableValue<Dataset>("Dataset", true); 299 model.Dataset = ds; 300 model.TargetVariable = ds.GetVariableName(bestModelScope.GetVariableValue<IntData>("TargetVariable", true).Data); 301 model.TrainingSamplesStart = bestModelScope.GetVariableValue<IntData>("TrainingSamplesStart", true).Data; 302 model.TrainingSamplesEnd = bestModelScope.GetVariableValue<IntData>("TrainingSamplesEnd", true).Data; 303 model.ValidationSamplesStart = bestModelScope.GetVariableValue<IntData>("ValidationSamplesStart", true).Data; 304 model.ValidationSamplesEnd = bestModelScope.GetVariableValue<IntData>("ValidationSamplesEnd", true).Data; 305 model.TestSamplesStart = bestModelScope.GetVariableValue<IntData>("TestSamplesStart", true).Data; 306 model.TestSamplesEnd = bestModelScope.GetVariableValue<IntData>("TestSamplesEnd", true).Data; 307 308 ItemList evaluationImpacts = bestModelScope.GetVariableValue<ItemList>("VariableEvaluationImpacts", false); 309 ItemList qualityImpacts = bestModelScope.GetVariableValue<ItemList>("VariableQualityImpacts", false); 310 foreach (ItemList row in evaluationImpacts) { 311 string variableName = ((StringData)row[0]).Data; 312 double impact = ((DoubleData)row[1]).Data; 313 model.SetVariableEvaluationImpact(variableName, impact); 314 model.AddInputVariable(variableName); 315 } 316 foreach (ItemList row in qualityImpacts) { 317 string variableName = ((StringData)row[0]).Data; 318 double impact = ((DoubleData)row[1]).Data; 319 model.SetVariableQualityImpact(variableName, impact); 320 model.AddInputVariable(variableName); 321 } 322 323 return model; 143 protected virtual IAnalyzerModel CreateLRModel(IScope bestModelScope) { 144 return DefaultStructureIdentificationAlgorithmOperators.CreateGPModel(bestModelScope); 324 145 } 325 146 326 pr ivateIOperator GetMainOperator() {147 protected virtual IOperator GetMainOperator() { 327 148 CombinedOperator lr = (CombinedOperator)Engine.OperatorGraph.InitialOperator; 328 149 return lr.OperatorGraph.InitialOperator; … … 335 156 #region IEditable Members 336 157 337 public IEditor CreateEditor() {158 public virtual IEditor CreateEditor() { 338 159 return engine.CreateEditor(); 339 160 }
Note: See TracChangeset
for help on using the changeset viewer.