Free cookie consent management tool by TermsFeed Policy Generator

Ignore:
Timestamp:
08/08/09 11:17:28 (15 years ago)
Author:
gkronber
Message:

Refactoring: removed duplicate methods. #719

Location:
trunk/tools/CedmaImporter
Files:
2 edited

Legend:

Unmodified
Added
Removed
  • trunk/tools/CedmaImporter/Importer.cs

    r2260 r2263  
    3737      using (StreamReader reader = File.OpenText(fileName)) {
    3838        ReadResultsAndInputVariables(reader);
     39        reader.ReadLine();
    3940        ImportAllModels(dirName, reader, database);
    4041      }
     
    6768        string targetVariableName = modelData[TARGETVARIABLE_COLUMN].Trim();
    6869        string algoName = modelData[ALGORITHM_COLUMN].Trim();
    69         HeuristicLab.Core.IItem modelItem = ParseModel(dirName, modelData[FILENAME_COLUMN].Trim(), algoName);
    70         HeuristicLab.Modeling.Database.SQLServerCompact.Variable targetVariable = new HeuristicLab.Modeling.Database.SQLServerCompact.Variable(targetVariableName);
    71         Algorithm algorithm = new Algorithm(algoName);
    72         Model model = new Model(targetVariable, algorithm);
    73         model.TrainingSamplesStart = problem.TrainingSamplesStart;
    74         model.TrainingSamplesEnd = problem.TrainingSamplesEnd;
    75         model.ValidationSamplesStart = problem.ValidationSamplesStart;
    76         model.ValidationSamplesEnd = problem.ValidationSamplesEnd;
    77         model.TestSamplesStart = problem.TestSamplesStart;
    78         model.TestSamplesEnd = problem.TestSamplesEnd;
     70        try {
     71          HeuristicLab.Core.IItem modelItem = ParseModel(dirName, modelData[FILENAME_COLUMN].Trim(), algoName);
     72          HeuristicLab.Modeling.Database.SQLServerCompact.Variable targetVariable = new HeuristicLab.Modeling.Database.SQLServerCompact.Variable(targetVariableName);
     73          Algorithm algorithm = new Algorithm(algoName);
     74          Model model = new Model(targetVariable, algorithm);
     75          model.TrainingSamplesStart = problem.TrainingSamplesStart;
     76          model.TrainingSamplesEnd = problem.TrainingSamplesEnd;
     77          model.ValidationSamplesStart = problem.ValidationSamplesStart;
     78          model.ValidationSamplesEnd = problem.ValidationSamplesEnd;
     79          model.TestSamplesStart = problem.TestSamplesStart;
     80          model.TestSamplesEnd = problem.TestSamplesEnd;
    7981
    80         IEnumerable<ModelResult> qualityModelResults = GetModelResults(model, modelData);
    81         IEnumerable<InputVariableResult> inputVariableResults = GetInputVariableResults(model, modelData);
     82          IEnumerable<ModelResult> qualityModelResults = GetModelResults(model, modelData);
     83          IEnumerable<InputVariableResult> inputVariableResults = GetInputVariableResults(model, modelData);
    8284
    83         // TODO
    84         //database.Persist(model);
    85         //foreach (ModelResult modelResult in qualityModelResults)
    86         //  database.Persist(modelResult);
    87         //foreach (InputVariableResult inputVariableResult in inputVariableResults)
    88         //  database.Persist(inputVariableResult);
    89 
     85          // TODO
     86          //database.Persist(model);
     87          //foreach (ModelResult modelResult in qualityModelResults)
     88          //  database.Persist(modelResult);
     89          //foreach (InputVariableResult inputVariableResult in inputVariableResults)
     90          //  database.Persist(inputVariableResult);
     91        }
     92        catch (Exception ex) {
     93        }
    9094      }
    9195    }
     
    104108    }
    105109
    106     Dictionary<string, IFunction> knownFunctions = new Dictionary<string, IFunction>() {
    107     {"+", new Addition()},
    108     {"and", new And()},
    109     {"mean", new Average()},
    110     {"cos", new Cosinus()},
    111     {"/", new Division()},
    112     {"equ", new Equal()},
    113     {"exp", new Exponential()},
    114     {">", new GreaterThan()},
    115     {"if", new IfThenElse()},
    116     {"<", new LessThan()},
    117     {"log", new Logarithm()},
    118     {"*", new Multiplication()},
    119     {"not", new Not()},
    120     {"or", new Or()},
    121     {"expt", new Power()},
    122     {"sign", new Signum()},
    123     {"sin",new Sinus()},
    124     {"sqrt", new Sqrt()},
    125     {"-", new Subtraction()},
    126     {"tan", new Tangens()},
    127     {"xor", new Xor()}
    128     };
    129     Constant constant = new Constant();
    130     HeuristicLab.GP.StructureIdentification.Variable variable = new HeuristicLab.GP.StructureIdentification.Variable();
    131     Differential differential = new Differential();
    132 
    133110    private HeuristicLab.Core.IItem ParseModel(string dirName, string modelFileName, string algoName) {
     111      foreach (char c in Path.GetInvalidFileNameChars()) {
     112        modelFileName = modelFileName.Replace(c, '_');
     113      }
    134114      if (algoName == "SupportVectorRegression") {
    135115        HeuristicLab.Data.SVMModel model = new HeuristicLab.Data.SVMModel();
     
    138118        return model;
    139119      } else {
     120        SymbolicExpressionImporter sexpImporter = new SymbolicExpressionImporter();
    140121        GeneticProgrammingModel model = new GeneticProgrammingModel();
    141         IEnumerable<Token> tokens = GetTokenStream(File.OpenText(Path.Combine(dirName, modelFileName) + ".gp.txt"));
    142         model.FunctionTree = ParseSexp(new Queue<Token>(tokens));
     122        model.FunctionTree = sexpImporter.Import(File.OpenText(Path.Combine(dirName, modelFileName) + ".gp.txt"));
    143123        return model;
    144       }
    145     }
    146 
    147     private IEnumerable<Token> GetTokenStream(StreamReader reader) {
    148       return from line in GetLineStream(reader)
    149              let strTokens = line.Split(new string[] { " ", "\t", Environment.NewLine }, StringSplitOptions.RemoveEmptyEntries).AsEnumerable()
    150              from strToken in strTokens
    151              let t = Token.Parse(strToken)
    152              where t != null
    153              select t;
    154     }
    155 
    156     private IEnumerable<string> GetLineStream(StreamReader reader) {
    157       while (!reader.EndOfStream) yield return reader.ReadLine().Replace("(", " ( ").Replace(")", " ) ");
    158       yield break;
    159     }
    160 
    161     private HeuristicLab.GP.Interfaces.IFunctionTree ParseSexp(Queue<Token> tokens) {
    162       Expect(Token.LPAR, tokens);
    163 
    164       if (tokens.Peek().Symbol == TokenSymbol.SYMB) {
    165         if (tokens.Peek().StringValue.Equals("variable")) {
    166           return ParseVariable(tokens);
    167         } else if (tokens.Peek().StringValue.Equals("differential")) {
    168           return ParseDifferential(tokens);
    169         } else {
    170           Token curToken = tokens.Dequeue();
    171           IFunctionTree tree = CreateTree(curToken);
    172           while (!tokens.Peek().Equals(Token.RPAR)) {
    173             tree.AddSubTree(ParseSexp(tokens));
    174           }
    175           Expect(Token.RPAR, tokens);
    176           return tree;
    177         }
    178       } else if (tokens.Peek().Symbol == TokenSymbol.NUMBER) {
    179         ConstantFunctionTree t = (ConstantFunctionTree)constant.GetTreeNode();
    180         t.Value = tokens.Dequeue().DoubleValue;
    181         return t;
    182       } else {
    183         throw new FormatException("Expected function or constant symbol");
    184       }
    185     }
    186 
    187     private IFunctionTree ParseDifferential(Queue<Token> tokens) {
    188       Debug.Assert(tokens.Dequeue().StringValue == "differential");
    189       VariableFunctionTree t = (VariableFunctionTree)differential.GetTreeNode();
    190       t.Weight = tokens.Dequeue().DoubleValue;
    191       t.VariableName = tokens.Dequeue().StringValue;
    192       t.SampleOffset = (int)tokens.Dequeue().DoubleValue;
    193       Expect(Token.RPAR, tokens);
    194       return t;
    195     }
    196 
    197     private IFunctionTree ParseVariable(Queue<Token> tokens) {
    198       Debug.Assert(tokens.Dequeue().StringValue == "variable");
    199       VariableFunctionTree t = (VariableFunctionTree)variable.GetTreeNode();
    200       t.Weight = tokens.Dequeue().DoubleValue;
    201       t.VariableName = tokens.Dequeue().StringValue;
    202       t.SampleOffset = (int)tokens.Dequeue().DoubleValue;
    203       Expect(Token.RPAR, tokens);
    204       return t;
    205     }
    206 
    207     private IFunctionTree CreateTree(Token token) {
    208       if (token.Symbol != TokenSymbol.SYMB) throw new FormatException("Expected function symbol, but got: " + token.StringValue);
    209       return knownFunctions[token.StringValue].GetTreeNode();
    210     }
    211 
    212     private void Expect(Token token, Queue<Token> tokens) {
    213       Token cur = tokens.Dequeue();
    214       if (!token.Equals(cur)) throw new FormatException("Expected: " + token.StringValue + ", but got found: " + cur.StringValue);
    215     }
    216 
    217     private enum TokenSymbol { LPAR, RPAR, SYMB, NUMBER };
    218     private class Token {
    219       public static readonly Token LPAR = Token.Parse("(");
    220       public static readonly Token RPAR = Token.Parse(")");
    221 
    222       public TokenSymbol Symbol { get; set; }
    223       public string StringValue { get; set; }
    224       public double DoubleValue { get; set; }
    225       public Token() { }
    226 
    227       public override bool Equals(object obj) {
    228         Token other = (obj as Token);
    229         if (other == null) return false;
    230         if (other.Symbol != Symbol) return false;
    231         return other.StringValue == this.StringValue;
    232       }
    233 
    234       public static Token Parse(string strToken) {
    235         strToken = strToken.Trim();
    236         Token t = new Token();
    237         t.StringValue = strToken.Trim();
    238         double temp;
    239         if (strToken == "") {
    240           t = null;
    241         } else if (strToken == "(") {
    242           t.Symbol = TokenSymbol.LPAR;
    243         } else if (strToken == ")") {
    244           t.Symbol = TokenSymbol.RPAR;
    245         } else if (double.TryParse(strToken, out temp)) {
    246           t.Symbol = TokenSymbol.NUMBER;
    247           t.DoubleValue = double.Parse(strToken);
    248         } else {
    249           t.Symbol = TokenSymbol.SYMB;
    250         }
    251         return t;
    252124      }
    253125    }
  • trunk/tools/CedmaImporter/SymbolicExpressionImporter.cs

    r2261 r2263  
    4343
    4444    public SymbolicExpressionImporter() {
     45    }
     46
     47    internal IFunctionTree Import(StreamReader streamReader) {
     48      return ParseSexp(new Queue<Token>(GetTokenStream(streamReader)));
    4549    }
    4650
Note: See TracChangeset for help on using the changeset viewer.