Changeset 2263 for trunk/tools/CedmaImporter
- Timestamp:
- 08/08/09 11:17:28 (15 years ago)
- Location:
- trunk/tools/CedmaImporter
- Files:
-
- 2 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/tools/CedmaImporter/Importer.cs
r2260 r2263 37 37 using (StreamReader reader = File.OpenText(fileName)) { 38 38 ReadResultsAndInputVariables(reader); 39 reader.ReadLine(); 39 40 ImportAllModels(dirName, reader, database); 40 41 } … … 67 68 string targetVariableName = modelData[TARGETVARIABLE_COLUMN].Trim(); 68 69 string algoName = modelData[ALGORITHM_COLUMN].Trim(); 69 HeuristicLab.Core.IItem modelItem = ParseModel(dirName, modelData[FILENAME_COLUMN].Trim(), algoName); 70 HeuristicLab.Modeling.Database.SQLServerCompact.Variable targetVariable = new HeuristicLab.Modeling.Database.SQLServerCompact.Variable(targetVariableName); 71 Algorithm algorithm = new Algorithm(algoName); 72 Model model = new Model(targetVariable, algorithm); 73 model.TrainingSamplesStart = problem.TrainingSamplesStart; 74 model.TrainingSamplesEnd = problem.TrainingSamplesEnd; 75 model.ValidationSamplesStart = problem.ValidationSamplesStart; 76 model.ValidationSamplesEnd = problem.ValidationSamplesEnd; 77 model.TestSamplesStart = problem.TestSamplesStart; 78 model.TestSamplesEnd = problem.TestSamplesEnd; 70 try { 71 HeuristicLab.Core.IItem modelItem = ParseModel(dirName, modelData[FILENAME_COLUMN].Trim(), algoName); 72 HeuristicLab.Modeling.Database.SQLServerCompact.Variable targetVariable = new HeuristicLab.Modeling.Database.SQLServerCompact.Variable(targetVariableName); 73 Algorithm algorithm = new Algorithm(algoName); 74 Model model = new Model(targetVariable, algorithm); 75 model.TrainingSamplesStart = problem.TrainingSamplesStart; 76 model.TrainingSamplesEnd = problem.TrainingSamplesEnd; 77 model.ValidationSamplesStart = problem.ValidationSamplesStart; 78 model.ValidationSamplesEnd = problem.ValidationSamplesEnd; 79 model.TestSamplesStart = problem.TestSamplesStart; 80 model.TestSamplesEnd = problem.TestSamplesEnd; 79 81 80 IEnumerable<ModelResult> qualityModelResults = GetModelResults(model, modelData);81 IEnumerable<InputVariableResult> inputVariableResults = GetInputVariableResults(model, modelData);82 IEnumerable<ModelResult> qualityModelResults = GetModelResults(model, modelData); 83 IEnumerable<InputVariableResult> inputVariableResults = GetInputVariableResults(model, modelData); 82 84 83 // TODO 84 //database.Persist(model); 85 //foreach (ModelResult modelResult in qualityModelResults) 86 // database.Persist(modelResult); 87 //foreach (InputVariableResult inputVariableResult in inputVariableResults) 88 // database.Persist(inputVariableResult); 89 85 // TODO 86 //database.Persist(model); 87 //foreach (ModelResult modelResult in qualityModelResults) 88 // database.Persist(modelResult); 89 //foreach (InputVariableResult inputVariableResult in inputVariableResults) 90 // database.Persist(inputVariableResult); 91 } 92 catch (Exception ex) { 93 } 90 94 } 91 95 } … … 104 108 } 105 109 106 Dictionary<string, IFunction> knownFunctions = new Dictionary<string, IFunction>() {107 {"+", new Addition()},108 {"and", new And()},109 {"mean", new Average()},110 {"cos", new Cosinus()},111 {"/", new Division()},112 {"equ", new Equal()},113 {"exp", new Exponential()},114 {">", new GreaterThan()},115 {"if", new IfThenElse()},116 {"<", new LessThan()},117 {"log", new Logarithm()},118 {"*", new Multiplication()},119 {"not", new Not()},120 {"or", new Or()},121 {"expt", new Power()},122 {"sign", new Signum()},123 {"sin",new Sinus()},124 {"sqrt", new Sqrt()},125 {"-", new Subtraction()},126 {"tan", new Tangens()},127 {"xor", new Xor()}128 };129 Constant constant = new Constant();130 HeuristicLab.GP.StructureIdentification.Variable variable = new HeuristicLab.GP.StructureIdentification.Variable();131 Differential differential = new Differential();132 133 110 private HeuristicLab.Core.IItem ParseModel(string dirName, string modelFileName, string algoName) { 111 foreach (char c in Path.GetInvalidFileNameChars()) { 112 modelFileName = modelFileName.Replace(c, '_'); 113 } 134 114 if (algoName == "SupportVectorRegression") { 135 115 HeuristicLab.Data.SVMModel model = new HeuristicLab.Data.SVMModel(); … … 138 118 return model; 139 119 } else { 120 SymbolicExpressionImporter sexpImporter = new SymbolicExpressionImporter(); 140 121 GeneticProgrammingModel model = new GeneticProgrammingModel(); 141 IEnumerable<Token> tokens = GetTokenStream(File.OpenText(Path.Combine(dirName, modelFileName) + ".gp.txt")); 142 model.FunctionTree = ParseSexp(new Queue<Token>(tokens)); 122 model.FunctionTree = sexpImporter.Import(File.OpenText(Path.Combine(dirName, modelFileName) + ".gp.txt")); 143 123 return model; 144 }145 }146 147 private IEnumerable<Token> GetTokenStream(StreamReader reader) {148 return from line in GetLineStream(reader)149 let strTokens = line.Split(new string[] { " ", "\t", Environment.NewLine }, StringSplitOptions.RemoveEmptyEntries).AsEnumerable()150 from strToken in strTokens151 let t = Token.Parse(strToken)152 where t != null153 select t;154 }155 156 private IEnumerable<string> GetLineStream(StreamReader reader) {157 while (!reader.EndOfStream) yield return reader.ReadLine().Replace("(", " ( ").Replace(")", " ) ");158 yield break;159 }160 161 private HeuristicLab.GP.Interfaces.IFunctionTree ParseSexp(Queue<Token> tokens) {162 Expect(Token.LPAR, tokens);163 164 if (tokens.Peek().Symbol == TokenSymbol.SYMB) {165 if (tokens.Peek().StringValue.Equals("variable")) {166 return ParseVariable(tokens);167 } else if (tokens.Peek().StringValue.Equals("differential")) {168 return ParseDifferential(tokens);169 } else {170 Token curToken = tokens.Dequeue();171 IFunctionTree tree = CreateTree(curToken);172 while (!tokens.Peek().Equals(Token.RPAR)) {173 tree.AddSubTree(ParseSexp(tokens));174 }175 Expect(Token.RPAR, tokens);176 return tree;177 }178 } else if (tokens.Peek().Symbol == TokenSymbol.NUMBER) {179 ConstantFunctionTree t = (ConstantFunctionTree)constant.GetTreeNode();180 t.Value = tokens.Dequeue().DoubleValue;181 return t;182 } else {183 throw new FormatException("Expected function or constant symbol");184 }185 }186 187 private IFunctionTree ParseDifferential(Queue<Token> tokens) {188 Debug.Assert(tokens.Dequeue().StringValue == "differential");189 VariableFunctionTree t = (VariableFunctionTree)differential.GetTreeNode();190 t.Weight = tokens.Dequeue().DoubleValue;191 t.VariableName = tokens.Dequeue().StringValue;192 t.SampleOffset = (int)tokens.Dequeue().DoubleValue;193 Expect(Token.RPAR, tokens);194 return t;195 }196 197 private IFunctionTree ParseVariable(Queue<Token> tokens) {198 Debug.Assert(tokens.Dequeue().StringValue == "variable");199 VariableFunctionTree t = (VariableFunctionTree)variable.GetTreeNode();200 t.Weight = tokens.Dequeue().DoubleValue;201 t.VariableName = tokens.Dequeue().StringValue;202 t.SampleOffset = (int)tokens.Dequeue().DoubleValue;203 Expect(Token.RPAR, tokens);204 return t;205 }206 207 private IFunctionTree CreateTree(Token token) {208 if (token.Symbol != TokenSymbol.SYMB) throw new FormatException("Expected function symbol, but got: " + token.StringValue);209 return knownFunctions[token.StringValue].GetTreeNode();210 }211 212 private void Expect(Token token, Queue<Token> tokens) {213 Token cur = tokens.Dequeue();214 if (!token.Equals(cur)) throw new FormatException("Expected: " + token.StringValue + ", but got found: " + cur.StringValue);215 }216 217 private enum TokenSymbol { LPAR, RPAR, SYMB, NUMBER };218 private class Token {219 public static readonly Token LPAR = Token.Parse("(");220 public static readonly Token RPAR = Token.Parse(")");221 222 public TokenSymbol Symbol { get; set; }223 public string StringValue { get; set; }224 public double DoubleValue { get; set; }225 public Token() { }226 227 public override bool Equals(object obj) {228 Token other = (obj as Token);229 if (other == null) return false;230 if (other.Symbol != Symbol) return false;231 return other.StringValue == this.StringValue;232 }233 234 public static Token Parse(string strToken) {235 strToken = strToken.Trim();236 Token t = new Token();237 t.StringValue = strToken.Trim();238 double temp;239 if (strToken == "") {240 t = null;241 } else if (strToken == "(") {242 t.Symbol = TokenSymbol.LPAR;243 } else if (strToken == ")") {244 t.Symbol = TokenSymbol.RPAR;245 } else if (double.TryParse(strToken, out temp)) {246 t.Symbol = TokenSymbol.NUMBER;247 t.DoubleValue = double.Parse(strToken);248 } else {249 t.Symbol = TokenSymbol.SYMB;250 }251 return t;252 124 } 253 125 } -
trunk/tools/CedmaImporter/SymbolicExpressionImporter.cs
r2261 r2263 43 43 44 44 public SymbolicExpressionImporter() { 45 } 46 47 internal IFunctionTree Import(StreamReader streamReader) { 48 return ParseSexp(new Queue<Token>(GetTokenStream(streamReader))); 45 49 } 46 50
Note: See TracChangeset
for help on using the changeset viewer.