Changeset 17970 for branches/3106_AnalyticContinuedFractionsRegression/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4
- Timestamp:
- 04/30/21 12:18:19 (4 years ago)
- Location:
- branches/3106_AnalyticContinuedFractionsRegression
- Files:
-
- 9 edited
- 6 copied
Legend:
- Unmodified
- Added
- Removed
-
branches/3106_AnalyticContinuedFractionsRegression
- Property svn:mergeinfo changed
-
branches/3106_AnalyticContinuedFractionsRegression/HeuristicLab.Problems.DataAnalysis.Symbolic
- Property svn:mergeinfo changed
-
branches/3106_AnalyticContinuedFractionsRegression/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Converters/DerivativeCalculator.cs
r17180 r17970 149 149 return Product(Product(CreateConstant(3.0), Square(f)), Derive(f, variableName)); 150 150 } 151 if (branch.Symbol is Power) { 152 // HL evaluators handle power strangely (exponent is rounded to an integer) 153 // here we only support the case when the exponent is a constant integer 154 var exponent = branch.GetSubtree(1) as ConstantTreeNode; 155 if (exponent != null && Math.Truncate(exponent.Value) == exponent.Value) { 156 var newPower = (ISymbolicExpressionTreeNode)branch.Clone(); 157 var f = (ISymbolicExpressionTreeNode)newPower.GetSubtree(0).Clone(); 158 var newExponent = (ConstantTreeNode)newPower.GetSubtree(1); 159 newExponent.Value -= 1; 160 return Product(Product(CreateConstant(exponent.Value), newPower), Derive(f, variableName)); 161 } else throw new NotSupportedException("Cannot derive non-integer powers"); 162 } 151 163 if (branch.Symbol is Absolute) { 152 164 var f = (ISymbolicExpressionTreeNode)branch.GetSubtree(0).Clone(); … … 263 275 !(n.Symbol is Cube) && 264 276 !(n.Symbol is CubeRoot) && 277 !(n.Symbol is Power) && 265 278 !(n.Symbol is Absolute) && 266 279 !(n.Symbol is AnalyticQuotient) && 280 !(n.Symbol is HyperbolicTangent) && 267 281 !(n.Symbol is Sine) && 268 282 !(n.Symbol is Cosine) && -
branches/3106_AnalyticContinuedFractionsRegression/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Converters/TreeSimplifier.cs
r17820 r17970 784 784 } else if (IsExp(node)) { 785 785 return MakeExp(MakeProduct(node.GetSubtree(0), MakeConstant(2.0))); // sqr(exp(x)) = exp(2x) 786 } else if (IsSquare(node)) { 787 return MakePower(node.GetSubtree(0), MakeConstant(4)); 786 788 } else if (IsCube(node)) { 787 789 return MakePower(node.GetSubtree(0), MakeConstant(6)); … … 809 811 } else if (IsSquare(node)) { 810 812 return MakePower(node.GetSubtree(0), MakeConstant(6)); 813 } else if (IsCube(node)) { 814 return MakePower(node.GetSubtree(0), MakeConstant(9)); 811 815 } else { 812 816 var cubeNode = cubeSymbol.CreateTreeNode(); -
branches/3106_AnalyticContinuedFractionsRegression/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/HeuristicLab.Problems.DataAnalysis.Symbolic-3.4.csproj
r17413 r17970 99 99 </PropertyGroup> 100 100 <ItemGroup> 101 <Reference Include="ALGLIB-3.7.0, Version=3.7.0.0, Culture=neutral, PublicKeyToken=ba48961d6f65dcec, processorArchitecture=MSIL"> 102 <HintPath>..\..\bin\ALGLIB-3.7.0.dll</HintPath> 101 <Reference Include="ALGLIB-3.17.0, Version=3.17.0.0, Culture=neutral, PublicKeyToken=ba48961d6f65dcec, processorArchitecture=MSIL"> 102 <SpecificVersion>False</SpecificVersion> 103 <HintPath>..\..\bin\ALGLIB-3.17.0.dll</HintPath> 103 104 <Private>False</Private> 104 105 </Reference> … … 107 108 <Private>False</Private> 108 109 </Reference> 109 <Reference Include="HEAL.Attic, Version=1. 0.0.0, Culture=neutral, PublicKeyToken=ba48961d6f65dcec, processorArchitecture=MSIL">110 <Reference Include="HEAL.Attic, Version=1.4.0.0, Culture=neutral, PublicKeyToken=ba48961d6f65dcec, processorArchitecture=MSIL"> 110 111 <SpecificVersion>False</SpecificVersion> 111 112 <HintPath>..\..\bin\HEAL.Attic.dll</HintPath> … … 153 154 <Compile Include="Crossovers\SymbolicDataAnalysisExpressionDiversityPreservingCrossover.cs" /> 154 155 <Compile Include="Formatters\InfixExpressionFormatter.cs" /> 156 <Compile Include="Formatters\SymbolicDataAnalysisExpressionPythonFormatter.cs" /> 155 157 <Compile Include="Formatters\TSQLExpressionFormatter.cs" /> 156 158 <Compile Include="Formatters\SymbolicDataAnalysisExpressionMathematicaFormatter.cs" /> 157 159 <Compile Include="Formatters\SymbolicDataAnalysisExpressionCSharpFormatter.cs" /> 158 160 <Compile Include="Grammars\DataAnalysisGrammar.cs" /> 161 <Compile Include="Grammars\LinearScalingGrammar.cs" /> 159 162 <Compile Include="Hashing\HashExtensions.cs" /> 160 163 <Compile Include="Hashing\HashUtil.cs" /> … … 163 166 <Compile Include="Importer\SymbolicExpressionImporter.cs" /> 164 167 <Compile Include="Importer\Token.cs" /> 168 <Compile Include="Interfaces\IBoundsEstimator.cs" /> 165 169 <Compile Include="Interfaces\IModelBacktransformator.cs" /> 166 170 <Compile Include="Interfaces\IVariableTreeNode.cs" /> … … 168 172 <Compile Include="Interpreter\BatchInstruction.cs" /> 169 173 <Compile Include="Interpreter\BatchOperations.cs" /> 174 <Compile Include="Interpreter\IntervalArithBoundsEstimator.cs" /> 175 <Compile Include="Interpreter\IntervalArithCompiledExpressionBoundsEstimator.cs" /> 170 176 <Compile Include="Interpreter\IntervalInterpreter.cs" /> 171 177 <Compile Include="Interpreter\SymbolicDataAnalysisExpressionCompiledTreeInterpreter.cs" /> 172 178 <Compile Include="Interpreter\SymbolicDataAnalysisExpressionTreeBatchInterpreter.cs" /> 173 179 <Compile Include="Interpreter\SymbolicDataAnalysisExpressionTreeNativeInterpreter.cs" /> 180 <Compile Include="IntervalUtil.cs" /> 174 181 <Compile Include="Selectors\DiversitySelector.cs" /> 175 182 <Compile Include="SymbolicDataAnalysisExpressionTreeAverageSimilarityCalculator.cs" /> -
branches/3106_AnalyticContinuedFractionsRegression/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Importer/InfixExpressionParser.cs
r17180 r17970 64 64 } 65 65 66 private class Symbol NameComparer : IEqualityComparer<ISymbol>, IComparer<ISymbol> {66 private class SymbolComparer : IEqualityComparer<ISymbol>, IComparer<ISymbol> { 67 67 public int Compare(ISymbol x, ISymbol y) { 68 68 return x.Name.CompareTo(y.Name); … … 70 70 71 71 public bool Equals(ISymbol x, ISymbol y) { 72 return Compare(x, y) == 0;72 return x.GetType() == y.GetType(); 73 73 } 74 74 75 75 public int GetHashCode(ISymbol obj) { 76 return obj. Name.GetHashCode();76 return obj.GetType().GetHashCode(); 77 77 } 78 78 } … … 80 80 // the lookup table is also used in the corresponding formatter 81 81 internal static readonly BidirectionalLookup<string, ISymbol> 82 knownSymbols = new BidirectionalLookup<string, ISymbol>(StringComparer.InvariantCulture, new Symbol NameComparer());82 knownSymbols = new BidirectionalLookup<string, ISymbol>(StringComparer.InvariantCulture, new SymbolComparer()); 83 83 84 84 private Constant constant = new Constant(); -
branches/3106_AnalyticContinuedFractionsRegression/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Interpreter/IntervalInterpreter.cs
r17579 r17970 1 1 #region License Information 2 2 3 /* HeuristicLab 3 4 * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL) … … 18 19 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>. 19 20 */ 21 20 22 #endregion 21 23 … … 32 34 namespace HeuristicLab.Problems.DataAnalysis.Symbolic { 33 35 [StorableType("DE6C1E1E-D7C1-4070-847E-63B68562B10C")] 34 [Item("IntervalInterpreter", "Int perter for calculation of intervals of symbolic models.")]36 [Item("IntervalInterpreter", "Interpreter for calculation of intervals of symbolic models.")] 35 37 public sealed class IntervalInterpreter : ParameterizedNamedItem, IStatefulItem { 36 37 38 private const string EvaluatedSolutionsParameterName = "EvaluatedSolutions"; 38 39 public IFixedValueParameter<IntValue> EvaluatedSolutionsParameter { 40 get { return (IFixedValueParameter<IntValue>)Parameters[EvaluatedSolutionsParameterName]; } 41 } 39 public IFixedValueParameter<IntValue> EvaluatedSolutionsParameter => 40 (IFixedValueParameter<IntValue>)Parameters[EvaluatedSolutionsParameterName]; 42 41 43 42 public int EvaluatedSolutions { 44 get { return EvaluatedSolutionsParameter.Value.Value; }45 set { EvaluatedSolutionsParameter.Value.Value = value; }43 get => EvaluatedSolutionsParameter.Value.Value; 44 set => EvaluatedSolutionsParameter.Value.Value = value; 46 45 } 47 46 48 47 [StorableConstructor] 49 48 private IntervalInterpreter(StorableConstructorFlag _) : base(_) { } 49 50 50 private IntervalInterpreter(IntervalInterpreter original, Cloner cloner) 51 51 : base(original, cloner) { } 52 52 53 53 public IntervalInterpreter() 54 : base("IntervalInterpreter", "Intperter for calculation of intervals of symbolic models.") { 55 Parameters.Add(new FixedValueParameter<IntValue>(EvaluatedSolutionsParameterName, "A counter for the total number of solutions the interpreter has evaluated", new IntValue(0))); 54 : base("IntervalInterpreter", "Interpreter for calculation of intervals of symbolic models.") { 55 Parameters.Add(new FixedValueParameter<IntValue>(EvaluatedSolutionsParameterName, 56 "A counter for the total number of solutions the interpreter has evaluated", new IntValue(0))); 56 57 } 57 58 … … 63 64 64 65 #region IStatefulItem Members 66 65 67 public void InitializeState() { 66 68 EvaluatedSolutions = 0; 67 69 } 70 68 71 public void ClearState() { } 72 69 73 #endregion 70 74 71 public Interval GetSymbolicExpressionTreeInterval(ISymbolicExpressionTree tree, IDataset dataset, IEnumerable<int> rows = null) { 75 public Interval GetSymbolicExpressionTreeInterval( 76 ISymbolicExpressionTree tree, IDataset dataset, 77 IEnumerable<int> rows = null) { 72 78 var variableRanges = DatasetUtil.GetVariableRanges(dataset, rows); 73 79 return GetSymbolicExpressionTreeInterval(tree, variableRanges); 74 80 } 75 81 76 public Interval GetSymbolicExpressionTreeIntervals(ISymbolicExpressionTree tree, IDataset dataset, 77 out IDictionary<ISymbolicExpressionTreeNode, Interval> nodeIntervals, IEnumerable<int> rows = null) { 82 public Interval GetSymbolicExpressionTreeIntervals( 83 ISymbolicExpressionTree tree, IDataset dataset, 84 out IDictionary<ISymbolicExpressionTreeNode, Interval> 85 nodeIntervals, IEnumerable<int> rows = null) { 78 86 var variableRanges = DatasetUtil.GetVariableRanges(dataset, rows); 79 87 return GetSymbolicExpressionTreeIntervals(tree, variableRanges, out nodeIntervals); 80 88 } 81 89 82 public Interval GetSymbolicExpressionTreeInterval(ISymbolicExpressionTree tree, IReadOnlyDictionary<string, Interval> variableRanges) { 90 public Interval GetSymbolicExpressionTreeInterval( 91 ISymbolicExpressionTree tree, 92 IReadOnlyDictionary<string, Interval> variableRanges) { 83 93 lock (syncRoot) { 84 94 EvaluatedSolutions++; 85 95 } 86 int instructionCount = 0; 96 97 Interval outputInterval; 98 99 var instructionCount = 0; 87 100 var instructions = PrepareInterpreterState(tree, variableRanges); 88 var outputInterval = Evaluate(instructions, ref instructionCount); 89 90 // because of numerical errors the bounds might be incorrect 91 if (outputInterval.LowerBound <= outputInterval.UpperBound) 92 return outputInterval; 93 else 94 return new Interval(outputInterval.UpperBound, outputInterval.LowerBound); 95 } 96 97 98 public Interval GetSymbolicExpressionTreeIntervals(ISymbolicExpressionTree tree, 99 IReadOnlyDictionary<string, Interval> variableRanges, out IDictionary<ISymbolicExpressionTreeNode, Interval> nodeIntervals) { 101 outputInterval = Evaluate(instructions, ref instructionCount); 102 103 return outputInterval.LowerBound <= outputInterval.UpperBound 104 ? outputInterval 105 : new Interval(outputInterval.UpperBound, outputInterval.LowerBound); 106 } 107 108 109 public Interval GetSymbolicExpressionTreeIntervals( 110 ISymbolicExpressionTree tree, 111 IReadOnlyDictionary<string, Interval> variableRanges, 112 out IDictionary<ISymbolicExpressionTreeNode, Interval> 113 nodeIntervals) { 100 114 lock (syncRoot) { 101 115 EvaluatedSolutions++; 102 116 } 103 int instructionCount = 0; 117 104 118 var intervals = new Dictionary<ISymbolicExpressionTreeNode, Interval>(); 105 119 var instructions = PrepareInterpreterState(tree, variableRanges); 106 var outputInterval = Evaluate(instructions, ref instructionCount, intervals); 107 108 // fix incorrect intervals if necessary (could occur because of numerical errors) 120 121 Interval outputInterval; 122 var instructionCount = 0; 123 outputInterval = Evaluate(instructions, ref instructionCount, intervals); 124 109 125 nodeIntervals = new Dictionary<ISymbolicExpressionTreeNode, Interval>(); 110 126 foreach (var kvp in intervals) { … … 119 135 if (outputInterval.IsInfiniteOrUndefined || outputInterval.LowerBound <= outputInterval.UpperBound) 120 136 return outputInterval; 121 else 122 return new Interval(outputInterval.UpperBound, outputInterval.LowerBound); 123 } 124 125 126 private static Instruction[] PrepareInterpreterState(ISymbolicExpressionTree tree, IReadOnlyDictionary<string, Interval> variableRanges) { 137 138 return new Interval(outputInterval.UpperBound, outputInterval.LowerBound); 139 } 140 141 142 private static Instruction[] PrepareInterpreterState( 143 ISymbolicExpressionTree tree, 144 IReadOnlyDictionary<string, Interval> variableRanges) { 127 145 if (variableRanges == null) 128 146 throw new ArgumentNullException("No variablew ranges are present!", nameof(variableRanges)); 129 147 130 //Check if all variables used in the tree are present in the dataset 131 foreach (var variable in tree.IterateNodesPrefix().OfType<VariableTreeNode>().Select(n => n.VariableName).Distinct()) { 132 if (!variableRanges.ContainsKey(variable)) throw new InvalidOperationException($"No ranges for variable {variable} is present"); 133 } 134 135 Instruction[] code = SymbolicExpressionTreeCompiler.Compile(tree, OpCodes.MapSymbolToOpCode); 136 foreach (Instruction instr in code.Where(i => i.opCode == OpCodes.Variable)) { 148 // Check if all variables used in the tree are present in the dataset 149 foreach (var variable in tree.IterateNodesPrefix().OfType<VariableTreeNode>().Select(n => n.VariableName) 150 .Distinct()) 151 if (!variableRanges.ContainsKey(variable)) 152 throw new InvalidOperationException($"No ranges for variable {variable} is present"); 153 154 var code = SymbolicExpressionTreeCompiler.Compile(tree, OpCodes.MapSymbolToOpCode); 155 foreach (var instr in code.Where(i => i.opCode == OpCodes.Variable)) { 137 156 var variableTreeNode = (VariableTreeNode)instr.dynamicNode; 138 157 instr.data = variableRanges[variableTreeNode.VariableName]; 139 158 } 159 140 160 return code; 141 161 } 142 162 143 private Interval Evaluate(Instruction[] instructions, ref int instructionCounter, IDictionary<ISymbolicExpressionTreeNode, Interval> nodeIntervals = null) { 144 Instruction currentInstr = instructions[instructionCounter]; 145 //Use ref parameter, because the tree will be iterated through recursively from the left-side branch to the right side 146 //Update instructionCounter, whenever Evaluate is called 163 // Use ref parameter, because the tree will be iterated through recursively from the left-side branch to the right side 164 // Update instructionCounter, whenever Evaluate is called 165 public static Interval Evaluate( 166 Instruction[] instructions, ref int instructionCounter, 167 IDictionary<ISymbolicExpressionTreeNode, Interval> nodeIntervals = null, 168 IReadOnlyDictionary<string, Interval> variableIntervals = null) { 169 var currentInstr = instructions[instructionCounter]; 170 147 171 instructionCounter++; 148 Interval result = null;172 Interval result; 149 173 150 174 switch (currentInstr.opCode) { 151 //Variables, Constants, ...152 175 case OpCodes.Variable: { 153 176 var variableTreeNode = (VariableTreeNode)currentInstr.dynamicNode; 154 177 var weightInterval = new Interval(variableTreeNode.Weight, variableTreeNode.Weight); 155 var variableInterval = (Interval)currentInstr.data; 178 179 Interval variableInterval; 180 if (variableIntervals != null && variableIntervals.ContainsKey(variableTreeNode.VariableName)) 181 variableInterval = variableIntervals[variableTreeNode.VariableName]; 182 else 183 variableInterval = (Interval)currentInstr.data; 156 184 157 185 result = Interval.Multiply(variableInterval, weightInterval); … … 163 191 break; 164 192 } 165 //Elementary arithmetic rules166 193 case OpCodes.Add: { 167 result = Evaluate(instructions, ref instructionCounter, nodeIntervals );168 for ( inti = 1; i < currentInstr.nArguments; i++) {169 var argumentInterval = Evaluate(instructions, ref instructionCounter, nodeIntervals );194 result = Evaluate(instructions, ref instructionCounter, nodeIntervals, variableIntervals); 195 for (var i = 1; i < currentInstr.nArguments; i++) { 196 var argumentInterval = Evaluate(instructions, ref instructionCounter, nodeIntervals, variableIntervals); 170 197 result = Interval.Add(result, argumentInterval); 171 198 } 199 172 200 break; 173 201 } 174 202 case OpCodes.Sub: { 175 result = Evaluate(instructions, ref instructionCounter, nodeIntervals );203 result = Evaluate(instructions, ref instructionCounter, nodeIntervals, variableIntervals); 176 204 if (currentInstr.nArguments == 1) 177 205 result = Interval.Multiply(new Interval(-1, -1), result); 178 206 179 for ( inti = 1; i < currentInstr.nArguments; i++) {180 var argumentInterval = Evaluate(instructions, ref instructionCounter, nodeIntervals );207 for (var i = 1; i < currentInstr.nArguments; i++) { 208 var argumentInterval = Evaluate(instructions, ref instructionCounter, nodeIntervals, variableIntervals); 181 209 result = Interval.Subtract(result, argumentInterval); 182 210 } 211 183 212 break; 184 213 } 185 214 case OpCodes.Mul: { 186 result = Evaluate(instructions, ref instructionCounter, nodeIntervals );187 for ( inti = 1; i < currentInstr.nArguments; i++) {188 var argumentInterval = Evaluate(instructions, ref instructionCounter, nodeIntervals );215 result = Evaluate(instructions, ref instructionCounter, nodeIntervals, variableIntervals); 216 for (var i = 1; i < currentInstr.nArguments; i++) { 217 var argumentInterval = Evaluate(instructions, ref instructionCounter, nodeIntervals, variableIntervals); 189 218 result = Interval.Multiply(result, argumentInterval); 190 219 } 220 191 221 break; 192 222 } 193 223 case OpCodes.Div: { 194 result = Evaluate(instructions, ref instructionCounter, nodeIntervals );224 result = Evaluate(instructions, ref instructionCounter, nodeIntervals, variableIntervals); 195 225 if (currentInstr.nArguments == 1) 196 226 result = Interval.Divide(new Interval(1, 1), result); 197 227 198 for ( inti = 1; i < currentInstr.nArguments; i++) {199 var argumentInterval = Evaluate(instructions, ref instructionCounter, nodeIntervals );228 for (var i = 1; i < currentInstr.nArguments; i++) { 229 var argumentInterval = Evaluate(instructions, ref instructionCounter, nodeIntervals, variableIntervals); 200 230 result = Interval.Divide(result, argumentInterval); 201 231 } 202 break; 203 }204 //Trigonometric functions232 233 break; 234 } 205 235 case OpCodes.Sin: { 206 var argumentInterval = Evaluate(instructions, ref instructionCounter, nodeIntervals );236 var argumentInterval = Evaluate(instructions, ref instructionCounter, nodeIntervals, variableIntervals); 207 237 result = Interval.Sine(argumentInterval); 208 238 break; 209 239 } 210 240 case OpCodes.Cos: { 211 var argumentInterval = Evaluate(instructions, ref instructionCounter, nodeIntervals );241 var argumentInterval = Evaluate(instructions, ref instructionCounter, nodeIntervals, variableIntervals); 212 242 result = Interval.Cosine(argumentInterval); 213 243 break; 214 244 } 215 245 case OpCodes.Tan: { 216 var argumentInterval = Evaluate(instructions, ref instructionCounter, nodeIntervals );246 var argumentInterval = Evaluate(instructions, ref instructionCounter, nodeIntervals, variableIntervals); 217 247 result = Interval.Tangens(argumentInterval); 218 248 break; 219 249 } 220 250 case OpCodes.Tanh: { 221 var argumentInterval = Evaluate(instructions, ref instructionCounter, nodeIntervals );251 var argumentInterval = Evaluate(instructions, ref instructionCounter, nodeIntervals, variableIntervals); 222 252 result = Interval.HyperbolicTangent(argumentInterval); 223 253 break; 224 254 } 225 //Exponential functions226 255 case OpCodes.Log: { 227 var argumentInterval = Evaluate(instructions, ref instructionCounter, nodeIntervals );256 var argumentInterval = Evaluate(instructions, ref instructionCounter, nodeIntervals, variableIntervals); 228 257 result = Interval.Logarithm(argumentInterval); 229 258 break; 230 259 } 231 260 case OpCodes.Exp: { 232 var argumentInterval = Evaluate(instructions, ref instructionCounter, nodeIntervals );261 var argumentInterval = Evaluate(instructions, ref instructionCounter, nodeIntervals, variableIntervals); 233 262 result = Interval.Exponential(argumentInterval); 234 263 break; 235 264 } 236 265 case OpCodes.Square: { 237 var argumentInterval = Evaluate(instructions, ref instructionCounter, nodeIntervals );266 var argumentInterval = Evaluate(instructions, ref instructionCounter, nodeIntervals, variableIntervals); 238 267 result = Interval.Square(argumentInterval); 239 268 break; 240 269 } 241 270 case OpCodes.SquareRoot: { 242 var argumentInterval = Evaluate(instructions, ref instructionCounter, nodeIntervals );271 var argumentInterval = Evaluate(instructions, ref instructionCounter, nodeIntervals, variableIntervals); 243 272 result = Interval.SquareRoot(argumentInterval); 244 273 break; 245 274 } 246 275 case OpCodes.Cube: { 247 var argumentInterval = Evaluate(instructions, ref instructionCounter, nodeIntervals );276 var argumentInterval = Evaluate(instructions, ref instructionCounter, nodeIntervals, variableIntervals); 248 277 result = Interval.Cube(argumentInterval); 249 278 break; 250 279 } 251 280 case OpCodes.CubeRoot: { 252 var argumentInterval = Evaluate(instructions, ref instructionCounter, nodeIntervals );281 var argumentInterval = Evaluate(instructions, ref instructionCounter, nodeIntervals, variableIntervals); 253 282 result = Interval.CubicRoot(argumentInterval); 254 283 break; 255 284 } 285 case OpCodes.Power: { 286 var a = Evaluate(instructions, ref instructionCounter, nodeIntervals, variableIntervals); 287 var b = Evaluate(instructions, ref instructionCounter, nodeIntervals, variableIntervals); 288 // support only integer powers 289 if(b.LowerBound == b.UpperBound && Math.Truncate(b.LowerBound) == b.LowerBound) { 290 result = Interval.Power(a, (int)b.LowerBound); 291 } else { 292 throw new NotSupportedException("Interval is only supported for integer powers"); 293 } 294 break; 295 } 296 256 297 case OpCodes.Absolute: { 257 var argumentInterval = Evaluate(instructions, ref instructionCounter, nodeIntervals );298 var argumentInterval = Evaluate(instructions, ref instructionCounter, nodeIntervals, variableIntervals); 258 299 result = Interval.Absolute(argumentInterval); 259 300 break; 260 301 } 261 302 case OpCodes.AnalyticQuotient: { 262 result = Evaluate(instructions, ref instructionCounter, nodeIntervals );263 for (var i = 1; i < currentInstr.nArguments; i++) { 264 var argumentInterval = Evaluate(instructions, ref instructionCounter, nodeIntervals );265 result = Interval.Analytic alQuotient(result, argumentInterval);303 result = Evaluate(instructions, ref instructionCounter, nodeIntervals, variableIntervals); 304 for (var i = 1; i < currentInstr.nArguments; i++) { 305 var argumentInterval = Evaluate(instructions, ref instructionCounter, nodeIntervals, variableIntervals); 306 result = Interval.AnalyticQuotient(result, argumentInterval); 266 307 } 267 308 … … 272 313 } 273 314 274 if ( nodeIntervals != null)315 if (!(nodeIntervals == null || nodeIntervals.ContainsKey(currentInstr.dynamicNode))) 275 316 nodeIntervals.Add(currentInstr.dynamicNode, result); 276 317 … … 278 319 } 279 320 321 280 322 public static bool IsCompatible(ISymbolicExpressionTree tree) { 281 var containsUnknownSy umbol= (323 var containsUnknownSymbols = ( 282 324 from n in tree.Root.GetSubtree(0).IterateNodesPrefix() 283 325 where 284 !(n.Symbol is Problems.DataAnalysis.Symbolic.Variable) &&326 !(n.Symbol is Variable) && 285 327 !(n.Symbol is Constant) && 286 328 !(n.Symbol is StartSymbol) && … … 292 334 !(n.Symbol is Cosine) && 293 335 !(n.Symbol is Tangent) && 336 !(n.Symbol is HyperbolicTangent) && 294 337 !(n.Symbol is Logarithm) && 295 338 !(n.Symbol is Exponential) && … … 298 341 !(n.Symbol is Cube) && 299 342 !(n.Symbol is CubeRoot) && 343 !(n.Symbol is Power) && 300 344 !(n.Symbol is Absolute) && 301 345 !(n.Symbol is AnalyticQuotient) 302 346 select n).Any(); 303 return !containsUnknownSy umbol;347 return !containsUnknownSymbols; 304 348 } 305 349 } -
branches/3106_AnalyticContinuedFractionsRegression/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Interpreter/OpCodes.cs
r17180 r17970 144 144 { typeof(Cosine), OpCodes.Cos }, 145 145 { typeof(Tangent), OpCodes.Tan }, 146 { typeof 146 { typeof(HyperbolicTangent), OpCodes.Tanh}, 147 147 { typeof(Logarithm), OpCodes.Log }, 148 148 { typeof(Exponential), OpCodes.Exp }, -
branches/3106_AnalyticContinuedFractionsRegression/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Plugin.cs.frame
r17184 r17970 28 28 [Plugin("HeuristicLab.Problems.DataAnalysis.Symbolic","Provides base classes for symbolic data analysis tasks.", "3.4.12.$WCREV$")] 29 29 [PluginFile("HeuristicLab.Problems.DataAnalysis.Symbolic-3.4.dll", PluginFileType.Assembly)] 30 [PluginDependency("HeuristicLab.ALGLIB", "3. 7.0")]30 [PluginDependency("HeuristicLab.ALGLIB", "3.17.0")] 31 31 [PluginDependency("HeuristicLab.AutoDiff", "1.0")] 32 32 [PluginDependency("HeuristicLab.Analysis", "3.3")]
Note: See TracChangeset
for help on using the changeset viewer.