Changeset 17966 for trunk/HeuristicLab.Problems.Instances.DataAnalysis
- Timestamp:
- 04/28/21 11:31:24 (4 years ago)
- Location:
- trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman
- Files:
-
- 120 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman1.cs
r17805 r17966 63 63 var f_noise = new List<double>(); 64 64 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * f.StandardDeviationPop(); 65 f_noise.AddRange(f.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));65 f_noise.AddRange(f.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 66 66 data.Remove(f); 67 67 data.Add(f_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman10.cs
r17805 r17966 71 71 var Ef_noise = new List<double>(); 72 72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * Ef.StandardDeviationPop(); 73 Ef_noise.AddRange(Ef.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));73 Ef_noise.AddRange(Ef.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(Ef); 75 75 data.Add(Ef_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman100.cs
r17805 r17966 73 73 var j_noise = new List<double>(); 74 74 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * j.StandardDeviationPop(); 75 j_noise.AddRange(j.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));75 j_noise.AddRange(j.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 76 76 data.Remove(j); 77 77 data.Add(j_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman11.cs
r17805 r17966 69 69 var F_noise = new List<double>(); 70 70 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * F.StandardDeviationPop(); 71 F_noise.AddRange(F.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));71 F_noise.AddRange(F.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 72 72 data.Remove(F); 73 73 data.Add(F_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman12.cs
r17805 r17966 75 75 var F_noise = new List<double>(); 76 76 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * F.StandardDeviationPop(); 77 F_noise.AddRange(F.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));77 F_noise.AddRange(F.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 78 78 data.Remove(F); 79 79 data.Add(F_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman13.cs
r17805 r17966 73 73 var K_noise = new List<double>(); 74 74 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * K.StandardDeviationPop(); 75 K_noise.AddRange(K.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));75 K_noise.AddRange(K.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 76 76 data.Remove(K); 77 77 data.Add(K_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman14.cs
r17805 r17966 75 75 var U_noise = new List<double>(); 76 76 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * U.StandardDeviationPop(); 77 U_noise.AddRange(U.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));77 U_noise.AddRange(U.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 78 78 data.Remove(U); 79 79 data.Add(U_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman15.cs
r17805 r17966 71 71 var U_noise = new List<double>(); 72 72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * U.StandardDeviationPop(); 73 U_noise.AddRange(U.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));73 U_noise.AddRange(U.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(U); 75 75 data.Add(U_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman16.cs
r17805 r17966 69 69 var U_noise = new List<double>(); 70 70 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * U.StandardDeviationPop(); 71 U_noise.AddRange(U.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));71 U_noise.AddRange(U.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 72 72 data.Remove(U); 73 73 data.Add(U_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman17.cs
r17805 r17966 10 10 private readonly int trainingSamples; 11 11 12 public Feynman17() : this((int) 12 public Feynman17() : this((int)DateTime.Now.Ticks, 10000, 10000, null) { } 13 13 14 14 public Feynman17(int seed) { 15 Seed 15 Seed = seed; 16 16 trainingSamples = 10000; 17 testSamples 18 noiseRatio 17 testSamples = 10000; 18 noiseRatio = null; 19 19 } 20 20 21 21 public Feynman17(int seed, int trainingSamples, int testSamples, double? noiseRatio) { 22 Seed 22 Seed = seed; 23 23 this.trainingSamples = trainingSamples; 24 this.testSamples 25 this.noiseRatio 24 this.testSamples = testSamples; 25 this.noiseRatio = noiseRatio; 26 26 } 27 27 … … 29 29 get { 30 30 return string.Format("I.15.3x (x-u*t)/sqrt(1-u**2/c**2) | {0}", 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}", noiseRatio));31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}", noiseRatio)); 32 32 } 33 33 } … … 36 36 37 37 protected override string[] VariableNames { 38 get { return new[] { "x", "u", "c", "t", noiseRatio == null ? "x1" : "x1_noise"}; }38 get { return new[] { "x", "u", "c", "t", noiseRatio == null ? "x1" : "x1_noise" }; } 39 39 } 40 40 41 protected override string[] AllowedInputVariables { get { return new[] { "x", "u", "c", "t"}; } }41 protected override string[] AllowedInputVariables { get { return new[] { "x", "u", "c", "t" }; } } 42 42 43 43 public int Seed { get; private set; } … … 49 49 50 50 protected override List<List<double>> GenerateValues() { 51 var rand = new MersenneTwister((uint) 51 var rand = new MersenneTwister((uint)Seed); 52 52 53 53 var data = new List<List<double>>(); 54 var x 55 var u 56 var c 57 var t 54 var x = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 5, 10).ToList(); 55 var u = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 2).ToList(); 56 var c = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 3, 20).ToList(); 57 var t = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 2).ToList(); 58 58 59 59 var x1 = new List<double>(); … … 71 71 72 72 if (noiseRatio != null) { 73 var x1_noise 74 var sigma_noise = (double) 75 x1_noise.AddRange(x1.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));73 var x1_noise = new List<double>(); 74 var sigma_noise = (double)Math.Sqrt(noiseRatio.Value) * x1.StandardDeviationPop(); 75 x1_noise.AddRange(x1.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 76 76 data.Remove(x1); 77 77 data.Add(x1_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman18.cs
r17805 r17966 73 73 var t1_noise = new List<double>(); 74 74 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * t1.StandardDeviationPop(); 75 t1_noise.AddRange(t1.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));75 t1_noise.AddRange(t1.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 76 76 data.Remove(t1); 77 77 data.Add(t1_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman19.cs
r17805 r17966 71 71 var p_noise = new List<double>(); 72 72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * p.StandardDeviationPop(); 73 p_noise.AddRange(p.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));73 p_noise.AddRange(p.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(p); 75 75 data.Add(p_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman2.cs
r17805 r17966 69 69 var f_noise = new List<double>(); 70 70 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * f.StandardDeviationPop(); 71 f_noise.AddRange(f.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));71 f_noise.AddRange(f.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 72 72 data.Remove(f); 73 73 data.Add(f_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman20.cs
r17805 r17966 71 71 var v1_noise = new List<double>(); 72 72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * v1.StandardDeviationPop(); 73 v1_noise.AddRange(v1.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));73 v1_noise.AddRange(v1.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(v1); 75 75 data.Add(v1_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman21.cs
r17805 r17966 73 73 var r_noise = new List<double>(); 74 74 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * r.StandardDeviationPop(); 75 r_noise.AddRange(r.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));75 r_noise.AddRange(r.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 76 76 data.Remove(r); 77 77 data.Add(r_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman22.cs
r17805 r17966 71 71 var tau_noise = new List<double>(); 72 72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * tau.StandardDeviationPop(); 73 tau_noise.AddRange(tau.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));73 tau_noise.AddRange(tau.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(tau); 75 75 data.Add(tau_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman23.cs
r17805 r17966 73 73 var L_noise = new List<double>(); 74 74 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * L.StandardDeviationPop(); 75 L_noise.AddRange(L.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));75 L_noise.AddRange(L.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 76 76 data.Remove(L); 77 77 data.Add(L_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman24.cs
r17805 r17966 73 73 var E_n_noise = new List<double>(); 74 74 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * E_n.StandardDeviationPop(); 75 E_n_noise.AddRange(E_n.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));75 E_n_noise.AddRange(E_n.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 76 76 data.Remove(E_n); 77 77 data.Add(E_n_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman25.cs
r17805 r17966 69 69 var Volt_noise = new List<double>(); 70 70 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * Volt.StandardDeviationPop(); 71 Volt_noise.AddRange(Volt.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));71 Volt_noise.AddRange(Volt.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 72 72 data.Remove(Volt); 73 73 data.Add(Volt_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman26.cs
r17805 r17966 69 69 var theta1_noise = new List<double>(); 70 70 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * theta1.StandardDeviationPop(); 71 theta1_noise.AddRange(theta1.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));71 theta1_noise.AddRange(theta1.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 72 72 data.Remove(theta1); 73 73 data.Add(theta1_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman27.cs
r17805 r17966 71 71 var foc_noise = new List<double>(); 72 72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * foc.StandardDeviationPop(); 73 foc_noise.AddRange(foc.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));73 foc_noise.AddRange(foc.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(foc); 75 75 data.Add(foc_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman28.cs
r17805 r17966 69 69 var k_noise = new List<double>(); 70 70 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * k.StandardDeviationPop(); 71 k_noise.AddRange(k.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));71 k_noise.AddRange(k.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 72 72 data.Remove(k); 73 73 data.Add(k_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman29.cs
r17805 r17966 74 74 var x_noise = new List<double>(); 75 75 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * x.StandardDeviationPop(); 76 x_noise.AddRange(x.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));76 x_noise.AddRange(x.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 77 77 data.Remove(x); 78 78 data.Add(x_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman3.cs
r17805 r17966 72 72 var f_noise = new List<double>(); 73 73 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * f.StandardDeviationPop(); 74 f_noise.AddRange(f.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));74 f_noise.AddRange(f.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 75 75 data.Remove(f); 76 76 data.Add(f_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman30.cs
r17805 r17966 71 71 var Int_noise = new List<double>(); 72 72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * Int.StandardDeviationPop(); 73 Int_noise.AddRange(Int.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));73 Int_noise.AddRange(Int.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(Int); 75 75 data.Add(Int_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman31.cs
r17805 r17966 71 71 var theta_noise = new List<double>(); 72 72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * theta.StandardDeviationPop(); 73 theta_noise.AddRange(theta.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));73 theta_noise.AddRange(theta.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(theta); 75 75 data.Add(theta_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman32.cs
r17805 r17966 73 73 var Pwr_noise = new List<double>(); 74 74 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * Pwr.StandardDeviationPop(); 75 Pwr_noise.AddRange(Pwr.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));75 Pwr_noise.AddRange(Pwr.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 76 76 data.Remove(Pwr); 77 77 data.Add(Pwr_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman33.cs
r17805 r17966 81 81 var Pwr_noise = new List<double>(); 82 82 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * Pwr.StandardDeviationPop(); 83 Pwr_noise.AddRange(Pwr.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));83 Pwr_noise.AddRange(Pwr.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 84 84 data.Remove(Pwr); 85 85 data.Add(Pwr_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman34.cs
r17805 r17966 73 73 var omega_noise = new List<double>(); 74 74 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * omega.StandardDeviationPop(); 75 omega_noise.AddRange(omega.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));75 omega_noise.AddRange(omega.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 76 76 data.Remove(omega); 77 77 data.Add(omega_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman35.cs
r17805 r17966 71 71 var omega_noise = new List<double>(); 72 72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * omega.StandardDeviationPop(); 73 omega_noise.AddRange(omega.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));73 omega_noise.AddRange(omega.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(omega); 75 75 data.Add(omega_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman36.cs
r17805 r17966 71 71 var omega_noise = new List<double>(); 72 72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * omega.StandardDeviationPop(); 73 omega_noise.AddRange(omega.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));73 omega_noise.AddRange(omega.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(omega); 75 75 data.Add(omega_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman37.cs
r17805 r17966 69 69 var E_n_noise = new List<double>(); 70 70 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * E_n.StandardDeviationPop(); 71 E_n_noise.AddRange(E_n.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));71 E_n_noise.AddRange(E_n.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 72 72 data.Remove(E_n); 73 73 data.Add(E_n_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman38.cs
r17805 r17966 71 71 var Int_noise = new List<double>(); 72 72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * Int.StandardDeviationPop(); 73 Int_noise.AddRange(Int.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));73 Int_noise.AddRange(Int.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(Int); 75 75 data.Add(Int_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman39.cs
r17805 r17966 73 73 var r_noise = new List<double>(); 74 74 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * r.StandardDeviationPop(); 75 r_noise.AddRange(r.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));75 r_noise.AddRange(r.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 76 76 data.Remove(r); 77 77 data.Add(r_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman4.cs
r17805 r17966 73 73 var d_noise = new List<double>(); 74 74 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * d.StandardDeviationPop(); 75 d_noise.AddRange(d.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));75 d_noise.AddRange(d.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 76 76 data.Remove(d); 77 77 data.Add(d_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman40.cs
r17805 r17966 69 69 var E_n_noise = new List<double>(); 70 70 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * E_n.StandardDeviationPop(); 71 E_n_noise.AddRange(E_n.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));71 E_n_noise.AddRange(E_n.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 72 72 data.Remove(E_n); 73 73 data.Add(E_n_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman41.cs
r17805 r17966 71 71 var E_n_noise = new List<double>(); 72 72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * E_n.StandardDeviationPop(); 73 E_n_noise.AddRange(E_n.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));73 E_n_noise.AddRange(E_n.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(E_n); 75 75 data.Add(E_n_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman42.cs
r17805 r17966 73 73 var pr_noise = new List<double>(); 74 74 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * pr.StandardDeviationPop(); 75 pr_noise.AddRange(pr.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));75 pr_noise.AddRange(pr.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 76 76 data.Remove(pr); 77 77 data.Add(pr_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman43.cs
r17805 r17966 77 77 var n_noise = new List<double>(); 78 78 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * n.StandardDeviationPop(); 79 n_noise.AddRange(n.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));79 n_noise.AddRange(n.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 80 80 data.Remove(n); 81 81 data.Add(n_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman44.cs
r17805 r17966 78 78 var L_rad_noise = new List<double>(); 79 79 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * L_rad.StandardDeviationPop(); 80 L_rad_noise.AddRange(L_rad.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));80 L_rad_noise.AddRange(L_rad.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 81 81 data.Remove(L_rad); 82 82 data.Add(L_rad_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman45.cs
r17805 r17966 73 73 var v_noise = new List<double>(); 74 74 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * v.StandardDeviationPop(); 75 v_noise.AddRange(v.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));75 v_noise.AddRange(v.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 76 76 data.Remove(v); 77 77 data.Add(v_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman46.cs
r17805 r17966 71 71 var D_noise = new List<double>(); 72 72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * D.StandardDeviationPop(); 73 D_noise.AddRange(D.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));73 D_noise.AddRange(D.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(D); 75 75 data.Add(D_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman47.cs
r17805 r17966 73 73 var kappa_noise = new List<double>(); 74 74 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * kappa.StandardDeviationPop(); 75 kappa_noise.AddRange(kappa.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));75 kappa_noise.AddRange(kappa.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 76 76 data.Remove(kappa); 77 77 data.Add(kappa_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman48.cs
r17805 r17966 75 75 var E_n_noise = new List<double>(); 76 76 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * E_n.StandardDeviationPop(); 77 E_n_noise.AddRange(E_n.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));77 E_n_noise.AddRange(E_n.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 78 78 data.Remove(E_n); 79 79 data.Add(E_n_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman49.cs
r17805 r17966 71 71 var c_noise = new List<double>(); 72 72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * c.StandardDeviationPop(); 73 c_noise.AddRange(c.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));73 c_noise.AddRange(c.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(c); 75 75 data.Add(c_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman5.cs
r17805 r17966 86 86 var F_noise = new List<double>(); 87 87 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * F.StandardDeviationPop(); 88 F_noise.AddRange(F.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));88 F_noise.AddRange(F.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 89 89 data.Remove(F); 90 90 data.Add(F_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman50.cs
r17805 r17966 71 71 var E_n_noise = new List<double>(); 72 72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * E_n.StandardDeviationPop(); 73 E_n_noise.AddRange(E_n.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));73 E_n_noise.AddRange(E_n.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(E_n); 75 75 data.Add(E_n_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman51.cs
r17805 r17966 73 73 var x_noise = new List<double>(); 74 74 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * x.StandardDeviationPop(); 75 x_noise.AddRange(x.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));75 x_noise.AddRange(x.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 76 76 data.Remove(x); 77 77 data.Add(x_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman52.cs
r17805 r17966 75 75 var Pwr_noise = new List<double>(); 76 76 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * Pwr.StandardDeviationPop(); 77 Pwr_noise.AddRange(Pwr.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));77 Pwr_noise.AddRange(Pwr.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 78 78 data.Remove(Pwr); 79 79 data.Add(Pwr_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman53.cs
r17805 r17966 69 69 var flux_noise = new List<double>(); 70 70 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * flux.StandardDeviationPop(); 71 flux_noise.AddRange(flux.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));71 flux_noise.AddRange(flux.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 72 72 data.Remove(flux); 73 73 data.Add(flux_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman54.cs
r17805 r17966 71 71 var Volt_noise = new List<double>(); 72 72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * Volt.StandardDeviationPop(); 73 Volt_noise.AddRange(Volt.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));73 Volt_noise.AddRange(Volt.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(Volt); 75 75 data.Add(Volt_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman55.cs
r17805 r17966 73 73 var Volt_noise = new List<double>(); 74 74 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * Volt.StandardDeviationPop(); 75 Volt_noise.AddRange(Volt.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));75 Volt_noise.AddRange(Volt.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 76 76 data.Remove(Volt); 77 77 data.Add(Volt_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman56.cs
r17805 r17966 78 78 var Ef_noise = new List<double>(); 79 79 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * Ef.StandardDeviationPop(); 80 Ef_noise.AddRange(Ef.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));80 Ef_noise.AddRange(Ef.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 81 81 data.Remove(Ef); 82 82 data.Add(Ef_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman57.cs
r17805 r17966 74 74 var Ef_noise = new List<double>(); 75 75 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * Ef.StandardDeviationPop(); 76 Ef_noise.AddRange(Ef.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));76 Ef_noise.AddRange(Ef.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 77 77 data.Remove(Ef); 78 78 data.Add(Ef_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman58.cs
r17805 r17966 71 71 var E_n_noise = new List<double>(); 72 72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * E_n.StandardDeviationPop(); 73 E_n_noise.AddRange(E_n.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));73 E_n_noise.AddRange(E_n.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(E_n); 75 75 data.Add(E_n_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman59.cs
r17805 r17966 69 69 var E_den_noise = new List<double>(); 70 70 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * E_den.StandardDeviationPop(); 71 E_den_noise.AddRange(E_den.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));71 E_den_noise.AddRange(E_den.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 72 72 data.Remove(E_den); 73 73 data.Add(E_den_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman6.cs
r17805 r17966 71 71 var m_noise = new List<double>(); 72 72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * m.StandardDeviationPop(); 73 m_noise.AddRange(m.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));73 m_noise.AddRange(m.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(m); 75 75 data.Add(m_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman60.cs
r17805 r17966 71 71 var Ef_noise = new List<double>(); 72 72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * Ef.StandardDeviationPop(); 73 Ef_noise.AddRange(Ef.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));73 Ef_noise.AddRange(Ef.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(Ef); 75 75 data.Add(Ef_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman61.cs
r17805 r17966 75 75 var x_noise = new List<double>(); 76 76 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * x.StandardDeviationPop(); 77 x_noise.AddRange(x.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));77 x_noise.AddRange(x.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 78 78 data.Remove(x); 79 79 data.Add(x_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman62.cs
r17805 r17966 77 77 var n_noise = new List<double>(); 78 78 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * n.StandardDeviationPop(); 79 n_noise.AddRange(n.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));79 n_noise.AddRange(n.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 80 80 data.Remove(n); 81 81 data.Add(n_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman63.cs
r17805 r17966 75 75 var Pol_noise = new List<double>(); 76 76 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * Pol.StandardDeviationPop(); 77 Pol_noise.AddRange(Pol.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));77 Pol_noise.AddRange(Pol.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 78 78 data.Remove(Pol); 79 79 data.Add(Pol_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman64.cs
r17805 r17966 73 73 var Pol_noise = new List<double>(); 74 74 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * Pol.StandardDeviationPop(); 75 Pol_noise.AddRange(Pol.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));75 Pol_noise.AddRange(Pol.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 76 76 data.Remove(Pol); 77 77 data.Add(Pol_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman65.cs
r17805 r17966 69 69 var theta_noise = new List<double>(); 70 70 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * theta.StandardDeviationPop(); 71 theta_noise.AddRange(theta.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));71 theta_noise.AddRange(theta.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 72 72 data.Remove(theta); 73 73 data.Add(theta_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman66.cs
r17805 r17966 73 73 var B_noise = new List<double>(); 74 74 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * B.StandardDeviationPop(); 75 B_noise.AddRange(B.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));75 B_noise.AddRange(B.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 76 76 data.Remove(B); 77 77 data.Add(B_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman67.cs
r17805 r17966 71 71 var rho_c_noise = new List<double>(); 72 72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * rho_c.StandardDeviationPop(); 73 rho_c_noise.AddRange(rho_c.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));73 rho_c_noise.AddRange(rho_c.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(rho_c); 75 75 data.Add(rho_c_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman68.cs
r17805 r17966 71 71 var j_noise = new List<double>(); 72 72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * j.StandardDeviationPop(); 73 j_noise.AddRange(j.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));73 j_noise.AddRange(j.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(j); 75 75 data.Add(j_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman69.cs
r17805 r17966 71 71 var E_n_noise = new List<double>(); 72 72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * E_n.StandardDeviationPop(); 73 E_n_noise.AddRange(E_n.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));73 E_n_noise.AddRange(E_n.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(E_n); 75 75 data.Add(E_n_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman7.cs
r17805 r17966 77 77 var A_noise = new List<double>(); 78 78 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * A.StandardDeviationPop(); 79 A_noise.AddRange(A.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));79 A_noise.AddRange(A.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 80 80 data.Remove(A); 81 81 data.Add(A_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman70.cs
r17805 r17966 71 71 var E_n_noise = new List<double>(); 72 72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * E_n.StandardDeviationPop(); 73 E_n_noise.AddRange(E_n.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));73 E_n_noise.AddRange(E_n.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(E_n); 75 75 data.Add(E_n_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman71.cs
r17805 r17966 75 75 var Volt_noise = new List<double>(); 76 76 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * Volt.StandardDeviationPop(); 77 Volt_noise.AddRange(Volt.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));77 Volt_noise.AddRange(Volt.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 78 78 data.Remove(Volt); 79 79 data.Add(Volt_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman72.cs
r17805 r17966 71 71 var k_noise = new List<double>(); 72 72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * k.StandardDeviationPop(); 73 k_noise.AddRange(k.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));73 k_noise.AddRange(k.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(k); 75 75 data.Add(k_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman73.cs
r17805 r17966 71 71 var flux_noise = new List<double>(); 72 72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * flux.StandardDeviationPop(); 73 flux_noise.AddRange(flux.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));73 flux_noise.AddRange(flux.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(flux); 75 75 data.Add(flux_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman74.cs
r17805 r17966 69 69 var E_den_noise = new List<double>(); 70 70 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * E_den.StandardDeviationPop(); 71 E_den_noise.AddRange(E_den.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));71 E_den_noise.AddRange(E_den.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 72 72 data.Remove(E_den); 73 73 data.Add(E_den_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman75.cs
r17805 r17966 71 71 var I_noise = new List<double>(); 72 72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * I.StandardDeviationPop(); 73 I_noise.AddRange(I.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));73 I_noise.AddRange(I.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(I); 75 75 data.Add(I_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman76.cs
r17805 r17966 71 71 var mom_noise = new List<double>(); 72 72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * mom.StandardDeviationPop(); 73 mom_noise.AddRange(mom.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));73 mom_noise.AddRange(mom.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(mom); 75 75 data.Add(mom_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman77.cs
r17805 r17966 73 73 var omega_noise = new List<double>(); 74 74 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * omega.StandardDeviationPop(); 75 omega_noise.AddRange(omega.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));75 omega_noise.AddRange(omega.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 76 76 data.Remove(omega); 77 77 data.Add(omega_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman78.cs
r17805 r17966 71 71 var mom_noise = new List<double>(); 72 72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * mom.StandardDeviationPop(); 73 mom_noise.AddRange(mom.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));73 mom_noise.AddRange(mom.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(mom); 75 75 data.Add(mom_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman79.cs
r17805 r17966 75 75 var E_n_noise = new List<double>(); 76 76 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * E_n.StandardDeviationPop(); 77 E_n_noise.AddRange(E_n.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));77 E_n_noise.AddRange(E_n.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 78 78 data.Remove(E_n); 79 79 data.Add(E_n_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman8.cs
r17805 r17966 69 69 var F_noise = new List<double>(); 70 70 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * F.StandardDeviationPop(); 71 F_noise.AddRange(F.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));71 F_noise.AddRange(F.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 72 72 data.Remove(F); 73 73 data.Add(F_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman80.cs
r17805 r17966 75 75 var n_noise = new List<double>(); 76 76 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * n.StandardDeviationPop(); 77 n_noise.AddRange(n.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));77 n_noise.AddRange(n.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 78 78 data.Remove(n); 79 79 data.Add(n_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman81.cs
r17805 r17966 75 75 var M_noise = new List<double>(); 76 76 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * M.StandardDeviationPop(); 77 M_noise.AddRange(M.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));77 M_noise.AddRange(M.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 78 78 data.Remove(M); 79 79 data.Add(M_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman82.cs
r17805 r17966 85 85 var f_noise = new List<double>(); 86 86 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * f.StandardDeviationPop(); 87 f_noise.AddRange(f.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));87 f_noise.AddRange(f.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 88 88 data.Remove(f); 89 89 data.Add(f_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman83.cs
r17805 r17966 71 71 var E_n_noise = new List<double>(); 72 72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * E_n.StandardDeviationPop(); 73 E_n_noise.AddRange(E_n.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));73 E_n_noise.AddRange(E_n.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(E_n); 75 75 data.Add(E_n_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman84.cs
r17805 r17966 73 73 var F_noise = new List<double>(); 74 74 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * F.StandardDeviationPop(); 75 F_noise.AddRange(F.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));75 F_noise.AddRange(F.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 76 76 data.Remove(F); 77 77 data.Add(F_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman85.cs
r17805 r17966 69 69 var mu_S_noise = new List<double>(); 70 70 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * mu_S.StandardDeviationPop(); 71 mu_S_noise.AddRange(mu_S.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));71 mu_S_noise.AddRange(mu_S.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 72 72 data.Remove(mu_S); 73 73 data.Add(mu_S_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman86.cs
r17805 r17966 73 73 var n_noise = new List<double>(); 74 74 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * n.StandardDeviationPop(); 75 n_noise.AddRange(n.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));75 n_noise.AddRange(n.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 76 76 data.Remove(n); 77 77 data.Add(n_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman87.cs
r17805 r17966 74 74 var E_n_noise = new List<double>(); 75 75 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * E_n.StandardDeviationPop(); 76 E_n_noise.AddRange(E_n.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));76 E_n_noise.AddRange(E_n.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 77 77 data.Remove(E_n); 78 78 data.Add(E_n_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman88.cs
r17805 r17966 71 71 var omega_noise = new List<double>(); 72 72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * omega.StandardDeviationPop(); 73 omega_noise.AddRange(omega.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));73 omega_noise.AddRange(omega.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(omega); 75 75 data.Add(omega_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman89.cs
r17805 r17966 71 71 var prob_noise = new List<double>(); 72 72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * prob.StandardDeviationPop(); 73 prob_noise.AddRange(prob.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));73 prob_noise.AddRange(prob.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(prob); 75 75 data.Add(prob_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman9.cs
r17805 r17966 73 73 var F_noise = new List<double>(); 74 74 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * F.StandardDeviationPop(); 75 F_noise.AddRange(F.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));75 F_noise.AddRange(F.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 76 76 data.Remove(F); 77 77 data.Add(F_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman90.cs
r17805 r17966 82 82 var prob_noise = new List<double>(); 83 83 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * prob.StandardDeviationPop(); 84 prob_noise.AddRange(prob.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));84 prob_noise.AddRange(prob.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 85 85 data.Remove(prob); 86 86 data.Add(prob_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman91.cs
r17805 r17966 73 73 var E_n_noise = new List<double>(); 74 74 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * E_n.StandardDeviationPop(); 75 E_n_noise.AddRange(E_n.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));75 E_n_noise.AddRange(E_n.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 76 76 data.Remove(E_n); 77 77 data.Add(E_n_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman92.cs
r17805 r17966 65 65 var L_noise = new List<double>(); 66 66 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * L.StandardDeviationPop(); 67 L_noise.AddRange(L.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));67 L_noise.AddRange(L.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 68 68 data.Remove(L); 69 69 data.Add(L_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman93.cs
r17805 r17966 73 73 var v_noise = new List<double>(); 74 74 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * v.StandardDeviationPop(); 75 v_noise.AddRange(v.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));75 v_noise.AddRange(v.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 76 76 data.Remove(v); 77 77 data.Add(v_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman94.cs
r17805 r17966 75 75 var I_noise = new List<double>(); 76 76 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * I.StandardDeviationPop(); 77 I_noise.AddRange(I.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));77 I_noise.AddRange(I.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 78 78 data.Remove(I); 79 79 data.Add(I_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman95.cs
r17805 r17966 71 71 var E_n_noise = new List<double>(); 72 72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * E_n.StandardDeviationPop(); 73 E_n_noise.AddRange(E_n.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));73 E_n_noise.AddRange(E_n.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(E_n); 75 75 data.Add(E_n_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman96.cs
r17805 r17966 71 71 var m_noise = new List<double>(); 72 72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * m.StandardDeviationPop(); 73 m_noise.AddRange(m.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));73 m_noise.AddRange(m.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(m); 75 75 data.Add(m_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman97.cs
r17805 r17966 71 71 var k_noise = new List<double>(); 72 72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * k.StandardDeviationPop(); 73 k_noise.AddRange(k.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));73 k_noise.AddRange(k.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(k); 75 75 data.Add(k_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman98.cs
r17805 r17966 71 71 var f_noise = new List<double>(); 72 72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * f.StandardDeviationPop(); 73 f_noise.AddRange(f.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));73 f_noise.AddRange(f.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(f); 75 75 data.Add(f_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman99.cs
r17805 r17966 77 77 var E_n_noise = new List<double>(); 78 78 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * E_n.StandardDeviationPop(); 79 E_n_noise.AddRange(E_n.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));79 E_n_noise.AddRange(E_n.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 80 80 data.Remove(E_n); 81 81 data.Add(E_n_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/FeynmanBonus1.cs
r17805 r17966 83 83 var A_noise = new List<double>(); 84 84 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * A.StandardDeviationPop(); 85 A_noise.AddRange(A.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));85 A_noise.AddRange(A.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 86 86 data.Remove(A); 87 87 data.Add(A_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/FeynmanBonus10.cs
r17805 r17966 73 73 var t_noise = new List<double>(); 74 74 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * t.StandardDeviationPop(); 75 t_noise.AddRange(t.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));75 t_noise.AddRange(t.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 76 76 data.Remove(t); 77 77 data.Add(t_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/FeynmanBonus11.cs
r17805 r17966 85 85 var alpha_noise = new List<double>(); 86 86 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * alpha.StandardDeviationPop(); 87 alpha_noise.AddRange(alpha.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));87 alpha_noise.AddRange(alpha.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 88 88 data.Remove(alpha); 89 89 data.Add(alpha_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/FeynmanBonus12.cs
r17805 r17966 79 79 var E_n_noise = new List<double>(); 80 80 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * E_n.StandardDeviationPop(); 81 E_n_noise.AddRange(E_n.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));81 E_n_noise.AddRange(E_n.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 82 82 data.Remove(E_n); 83 83 data.Add(E_n_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/FeynmanBonus13.cs
r17805 r17966 80 80 var E_n_noise = new List<double>(); 81 81 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * E_n.StandardDeviationPop(); 82 E_n_noise.AddRange(E_n.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));82 E_n_noise.AddRange(E_n.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 83 83 data.Remove(E_n); 84 84 data.Add(E_n_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/FeynmanBonus14.cs
r17805 r17966 78 78 var F_noise = new List<double>(); 79 79 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * F.StandardDeviationPop(); 80 F_noise.AddRange(F.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));80 F_noise.AddRange(F.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 81 81 data.Remove(F); 82 82 data.Add(F_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/FeynmanBonus15.cs
r17805 r17966 75 75 var Volt_noise = new List<double>(); 76 76 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * Volt.StandardDeviationPop(); 77 Volt_noise.AddRange(Volt.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));77 Volt_noise.AddRange(Volt.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 78 78 data.Remove(Volt); 79 79 data.Add(Volt_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/FeynmanBonus16.cs
r17805 r17966 77 77 var Volt_noise = new List<double>(); 78 78 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * Volt.StandardDeviationPop(); 79 Volt_noise.AddRange(Volt.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));79 Volt_noise.AddRange(Volt.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 80 80 data.Remove(Volt); 81 81 data.Add(Volt_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/FeynmanBonus17.cs
r17805 r17966 75 75 var omega_0_noise = new List<double>(); 76 76 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * omega_0.StandardDeviationPop(); 77 omega_0_noise.AddRange(omega_0.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));77 omega_0_noise.AddRange(omega_0.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 78 78 data.Remove(omega_0); 79 79 data.Add(omega_0_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/FeynmanBonus18.cs
r17805 r17966 75 75 var rho_0_noise = new List<double>(); 76 76 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * rho_0.StandardDeviationPop(); 77 rho_0_noise.AddRange(rho_0.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));77 rho_0_noise.AddRange(rho_0.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 78 78 data.Remove(rho_0); 79 79 data.Add(rho_0_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/FeynmanBonus19.cs
r17805 r17966 79 79 var pr_noise = new List<double>(); 80 80 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * pr.StandardDeviationPop(); 81 pr_noise.AddRange(pr.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));81 pr_noise.AddRange(pr.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 82 82 data.Remove(pr); 83 83 data.Add(pr_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/FeynmanBonus2.cs
r17805 r17966 75 75 var H_G_noise = new List<double>(); 76 76 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * H_G.StandardDeviationPop(); 77 H_G_noise.AddRange(H_G.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));77 H_G_noise.AddRange(H_G.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 78 78 data.Remove(H_G); 79 79 data.Add(H_G_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/FeynmanBonus20.cs
r17805 r17966 84 84 var A_noise = new List<double>(); 85 85 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * A.StandardDeviationPop(); 86 A_noise.AddRange(A.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));86 A_noise.AddRange(A.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 87 87 data.Remove(A); 88 88 data.Add(A_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/FeynmanBonus3.cs
r17805 r17966 74 74 var K_noise = new List<double>(); 75 75 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * K.StandardDeviationPop(); 76 K_noise.AddRange(K.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));76 K_noise.AddRange(K.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 77 77 data.Remove(K); 78 78 data.Add(K_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/FeynmanBonus4.cs
r17805 r17966 77 77 var Pwr_noise = new List<double>(); 78 78 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * Pwr.StandardDeviationPop(); 79 Pwr_noise.AddRange(Pwr.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));79 Pwr_noise.AddRange(Pwr.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 80 80 data.Remove(Pwr); 81 81 data.Add(Pwr_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/FeynmanBonus5.cs
r17805 r17966 72 72 var theta1_noise = new List<double>(); 73 73 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * theta1.StandardDeviationPop(); 74 theta1_noise.AddRange(theta1.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));74 theta1_noise.AddRange(theta1.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 75 75 data.Remove(theta1); 76 76 data.Add(theta1_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/FeynmanBonus6.cs
r17805 r17966 76 76 var I_noise = new List<double>(); 77 77 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * I.StandardDeviationPop(); 78 I_noise.AddRange(I.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));78 I_noise.AddRange(I.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 79 79 data.Remove(I); 80 80 data.Add(I_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/FeynmanBonus7.cs
r17805 r17966 75 75 var v_noise = new List<double>(); 76 76 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * v.StandardDeviationPop(); 77 v_noise.AddRange(v.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));77 v_noise.AddRange(v.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 78 78 data.Remove(v); 79 79 data.Add(v_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/FeynmanBonus8.cs
r17805 r17966 82 82 var k_noise = new List<double>(); 83 83 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * k.StandardDeviationPop(); 84 k_noise.AddRange(k.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));84 k_noise.AddRange(k.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 85 85 data.Remove(k); 86 86 data.Add(k_noise); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/FeynmanBonus9.cs
r17805 r17966 74 74 var r_noise = new List<double>(); 75 75 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * r.StandardDeviationPop(); 76 r_noise.AddRange(r.Select(md => md + NormalDistributedRandom .NextDouble(rand, 0, sigma_noise)));76 r_noise.AddRange(r.Select(md => md + NormalDistributedRandomPolar.NextDouble(rand, 0, sigma_noise))); 77 77 data.Remove(r); 78 78 data.Add(r_noise);
Note: See TracChangeset
for help on using the changeset viewer.