Changeset 1796
- Timestamp:
- 05/14/09 13:46:57 (16 years ago)
- Location:
- trunk/sources
- Files:
-
- 2 added
- 19 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/sources/HeuristicLab.GP.StructureIdentification.Classification/3.3/AccuracyEvaluator.cs
r1529 r1796 43 43 } 44 44 45 public override void Evaluate(IScope scope, BakedTreeEvaluator evaluator, Dataset dataset, int targetVariable, double[] classes, double[] thresholds, int start, int end) {45 public override void Evaluate(IScope scope, ITreeEvaluator evaluator, IFunctionTree tree, Dataset dataset, int targetVariable, double[] classes, double[] thresholds, int start, int end) { 46 46 DoubleData accuracy = GetVariableValue<DoubleData>("Accuracy", scope, false, false); 47 47 if (accuracy == null) { … … 53 53 int nCorrect = 0; 54 54 for (int sample = start; sample < end; sample++) { 55 double est = evaluator.Evaluate( sample);55 double est = evaluator.Evaluate(tree, sample); 56 56 double origClass = dataset.GetValue(sample, targetVariable); 57 57 double estClass = double.NaN; -
trunk/sources/HeuristicLab.GP.StructureIdentification.Classification/3.3/ClassificationMeanSquaredErrorEvaluator.cs
r1529 r1796 43 43 } 44 44 45 public override void Evaluate(IScope scope, BakedTreeEvaluator evaluator, HeuristicLab.DataAnalysis.Dataset dataset, int targetVariable, double[] classes, double[] thresholds, int start, int end) {45 public override void Evaluate(IScope scope, ITreeEvaluator evaluator, IFunctionTree tree, HeuristicLab.DataAnalysis.Dataset dataset, int targetVariable, double[] classes, double[] thresholds, int start, int end) { 46 46 double errorsSquaredSum = 0; 47 47 for (int sample = start; sample < end; sample++) { 48 double estimated = evaluator.Evaluate( sample);48 double estimated = evaluator.Evaluate(tree, sample); 49 49 double original = dataset.GetValue(sample, targetVariable); 50 50 if (!double.IsNaN(original) && !double.IsInfinity(original)) { -
trunk/sources/HeuristicLab.GP.StructureIdentification.Classification/3.3/ConfusionMatrixEvaluator.cs
r1529 r1796 41 41 } 42 42 43 public override void Evaluate(IScope scope, BakedTreeEvaluator evaluator, HeuristicLab.DataAnalysis.Dataset dataset, int targetVariable, double[] classes, double[] thresholds, int start, int end) {43 public override void Evaluate(IScope scope, ITreeEvaluator evaluator, IFunctionTree tree, HeuristicLab.DataAnalysis.Dataset dataset, int targetVariable, double[] classes, double[] thresholds, int start, int end) { 44 44 IntMatrixData matrix = GetVariableValue<IntMatrixData>("ConfusionMatrix", scope, false, false); 45 45 if (matrix == null) { … … 50 50 int nSamples = end - start; 51 51 for (int sample = start; sample < end; sample++) { 52 double est = evaluator.Evaluate( sample);52 double est = evaluator.Evaluate(tree, sample); 53 53 double origClass = dataset.GetValue(sample, targetVariable); 54 54 int estClassIndex = -1; -
trunk/sources/HeuristicLab.GP.StructureIdentification.Classification/3.3/GPClassificationEvaluatorBase.cs
r1529 r1796 37 37 } 38 38 39 public override void Evaluate(IScope scope, BakedTreeEvaluator evaluator, Dataset dataset, int targetVariable, int start, int end, bool updateTargetValues) {39 public override void Evaluate(IScope scope, ITreeEvaluator evaluator, IFunctionTree tree, Dataset dataset, int targetVariable, int start, int end, bool updateTargetValues) { 40 40 41 41 ItemList<DoubleData> classes = GetVariableValue<ItemList<DoubleData>>("TargetClassValues", scope, true); … … 48 48 } 49 49 50 Evaluate(scope, evaluator, dataset, targetVariable, classesArr, thresholds, start, end);50 Evaluate(scope, evaluator, tree, dataset, targetVariable, classesArr, thresholds, start, end); 51 51 } 52 52 53 public abstract void Evaluate(IScope scope, BakedTreeEvaluator evaluator, Dataset dataset, int targetVariable, double[] classes, double[] thresholds, int start, int end);53 public abstract void Evaluate(IScope scope, ITreeEvaluator evaluator, IFunctionTree tree, Dataset dataset, int targetVariable, double[] classes, double[] thresholds, int start, int end); 54 54 } 55 55 } -
trunk/sources/HeuristicLab.GP.StructureIdentification.Classification/3.3/MulticlassOneVsOneAnalyzer.cs
r1529 r1796 35 35 private const string TARGETVARIABLE = "TargetVariable"; 36 36 private const string TARGETCLASSVALUES = "TargetClassValues"; 37 private const string TRAININGSAMPLESSTART = "TrainingSamplesStart"; 38 private const string TRAININGSAMPLESEND = "TrainingSamplesEnd"; 37 39 private const string SAMPLESSTART = "SamplesStart"; 38 40 private const string SAMPLESEND = "SamplesEnd"; … … 56 58 AddVariableInfo(new VariableInfo(CLASSAVALUE, "The original class value of the class A in the subscope", typeof(DoubleData), VariableKind.In)); 57 59 AddVariableInfo(new VariableInfo(CLASSBVALUE, "The original class value of the class B in the subscope", typeof(DoubleData), VariableKind.In)); 60 AddVariableInfo(new VariableInfo(TRAININGSAMPLESSTART, "The start of training samples in the original dataset", typeof(IntData), VariableKind.In)); 61 AddVariableInfo(new VariableInfo(TRAININGSAMPLESEND, "The end of training samples in the original dataset", typeof(IntData), VariableKind.In)); 58 62 AddVariableInfo(new VariableInfo(SAMPLESSTART, "The start of samples in the original dataset", typeof(IntData), VariableKind.In)); 59 63 AddVariableInfo(new VariableInfo(SAMPLESEND, "The end of samples in the original dataset", typeof(IntData), VariableKind.In)); … … 67 71 Dataset dataset = GetVariableValue<Dataset>(DATASET, scope, true); 68 72 int targetVariable = GetVariableValue<IntData>(TARGETVARIABLE, scope, true).Data; 73 int trainingSamplesStart = GetVariableValue<IntData>(TRAININGSAMPLESSTART, scope, true).Data; 74 int trainingSamplesEnd = GetVariableValue<IntData>(TRAININGSAMPLESEND, scope, true).Data; 69 75 int samplesStart = GetVariableValue<IntData>(SAMPLESSTART, scope, true).Data; 70 76 int samplesEnd = GetVariableValue<IntData>(SAMPLESEND, scope, true).Data; … … 79 85 80 86 BakedTreeEvaluator evaluator = new BakedTreeEvaluator(); 81 evaluator.ResetEvaluator( functionTree, dataset, targetVariable, samplesStart, samplesEnd, 1.0);87 evaluator.ResetEvaluator(dataset, targetVariable, trainingSamplesStart, trainingSamplesEnd, 1.0); 82 88 83 89 for(int i = 0; i < (samplesEnd - samplesStart); i++) { 84 double est = evaluator.Evaluate( i + samplesStart);90 double est = evaluator.Evaluate(functionTree, i + samplesStart); 85 91 if(est < 0.5) { 86 92 CastVote(votes, i, classAValue, classValues); -
trunk/sources/HeuristicLab.GP.StructureIdentification.TimeSeries/3.3/AveragePercentageChangeEvaluator.cs
r1529 r1796 42 42 } 43 43 44 public override void Evaluate(IScope scope, BakedTreeEvaluator evaluator, HeuristicLab.DataAnalysis.Dataset dataset, int targetVariable, int start, int end, bool updateTargetValues) {44 public override void Evaluate(IScope scope, ITreeEvaluator evaluator, IFunctionTree tree, HeuristicLab.DataAnalysis.Dataset dataset, int targetVariable, int start, int end, bool updateTargetValues) { 45 45 bool differential = GetVariableValue<BoolData>("Differential", scope, true).Data; 46 46 DoubleData apc = GetVariableValue<DoubleData>("APC", scope, false, false); … … 58 58 prevOriginal = dataset.GetValue(sample - 1, targetVariable); 59 59 originalPercentageChange = (dataset.GetValue(sample, targetVariable) - prevOriginal) / prevOriginal; 60 estimatedPercentageChange = (evaluator.Evaluate( sample) - prevOriginal) / prevOriginal;60 estimatedPercentageChange = (evaluator.Evaluate(tree, sample) - prevOriginal) / prevOriginal; 61 61 if (updateTargetValues) { 62 62 dataset.SetValue(sample, targetVariable, estimatedPercentageChange * prevOriginal + prevOriginal); … … 64 64 } else { 65 65 originalPercentageChange = dataset.GetValue(sample, targetVariable); 66 estimatedPercentageChange = evaluator.Evaluate( sample);66 estimatedPercentageChange = evaluator.Evaluate(tree, sample); 67 67 if (updateTargetValues) { 68 68 dataset.SetValue(sample, targetVariable, estimatedPercentageChange); -
trunk/sources/HeuristicLab.GP.StructureIdentification.TimeSeries/3.3/ProfitEvaluator.cs
r1529 r1796 43 43 } 44 44 45 public override void Evaluate(IScope scope, BakedTreeEvaluator evaluator, HeuristicLab.DataAnalysis.Dataset dataset, int targetVariable, int start, int end, bool updateTargetValues) {45 public override void Evaluate(IScope scope, ITreeEvaluator evaluator, IFunctionTree tree, HeuristicLab.DataAnalysis.Dataset dataset, int targetVariable, int start, int end, bool updateTargetValues) { 46 46 int exchangeRateVarIndex = GetVariableValue<IntData>("ExchangeRate", scope, true).Data; 47 47 double transactionCost = GetVariableValue<DoubleData>("TransactionCost", scope, true).Data; … … 58 58 exchangeRate = dataset.GetValue(sample, exchangeRateVarIndex); 59 59 double originalPercentageChange = dataset.GetValue(sample, targetVariable); 60 double estimatedPercentageChange = evaluator.Evaluate( sample);60 double estimatedPercentageChange = evaluator.Evaluate(tree, sample); 61 61 if (updateTargetValues) { 62 62 dataset.SetValue(sample, targetVariable, estimatedPercentageChange); -
trunk/sources/HeuristicLab.GP.StructureIdentification.TimeSeries/3.3/TheilInequalityCoefficientEvaluator.cs
r1529 r1796 54 54 } 55 55 56 public override void Evaluate(IScope scope, BakedTreeEvaluator evaluator, Dataset dataset, int targetVariable, int start, int end, bool updateTargetValues) {56 public override void Evaluate(IScope scope, ITreeEvaluator evaluator, IFunctionTree tree, Dataset dataset, int targetVariable, int start, int end, bool updateTargetValues) { 57 57 #region create result variables 58 58 DoubleData theilInequaliy = GetVariableValue<DoubleData>("TheilInequalityCoefficient", scope, false, false); … … 85 85 for (int sample = start; sample < end; sample++) { 86 86 double prevValue = dataset.GetValue(sample - 1, targetVariable); 87 double estimatedChange = evaluator.Evaluate( sample) - prevValue;87 double estimatedChange = evaluator.Evaluate(tree, sample) - prevValue; 88 88 double originalChange = dataset.GetValue(sample, targetVariable) - prevValue; 89 89 if (updateTargetValues) { -
trunk/sources/HeuristicLab.GP.StructureIdentification/3.3/BakedTreeEvaluator.cs
r1787 r1796 34 34 /// Not thread-safe! 35 35 /// </summary> 36 public class BakedTreeEvaluator {36 public class BakedTreeEvaluator : ItemBase, ITreeEvaluator { 37 37 private const double EPSILON = 1.0e-7; 38 38 private double estimatedValueMax; … … 53 53 private int sampleIndex; 54 54 55 public void ResetEvaluator( BakedFunctionTree functionTree,Dataset dataset, int targetVariable, int start, int end, double punishmentFactor) {55 public void ResetEvaluator(Dataset dataset, int targetVariable, int start, int end, double punishmentFactor) { 56 56 this.dataset = dataset; 57 57 double maximumPunishment = punishmentFactor * dataset.GetRange(targetVariable, start, end); … … 62 62 estimatedValueMax = targetMean + maximumPunishment; 63 63 64 List<LightWeightFunction> linearRepresentation = functionTree.LinearRepresentation;65 codeArr = new Instr[linearRepresentation.Count];66 int i = 0;67 foreach (LightWeightFunction f in linearRepresentation) {68 codeArr[i++] = TranslateToInstr(f);69 }70 64 } 71 65 … … 94 88 } 95 89 96 public double Evaluate(int sampleIndex) { 90 public double Evaluate(IFunctionTree functionTree, int sampleIndex) { 91 BakedFunctionTree bakedTree = functionTree as BakedFunctionTree; 92 if (bakedTree == null) throw new ArgumentException("BakedTreeEvaluator can only evaluate BakedFunctionTrees"); 93 94 List<LightWeightFunction> linearRepresentation = bakedTree.LinearRepresentation; 95 codeArr = new Instr[linearRepresentation.Count]; 96 int i = 0; 97 foreach (LightWeightFunction f in linearRepresentation) { 98 codeArr[i++] = TranslateToInstr(f); 99 } 100 97 101 PC = 0; 98 102 this.sampleIndex = sampleIndex; -
trunk/sources/HeuristicLab.GP.StructureIdentification/3.3/Evaluators/CoefficientOfDeterminationEvaluator.cs
r712 r1796 42 42 } 43 43 44 public override void Evaluate(IScope scope, BakedTreeEvaluator evaluator, HeuristicLab.DataAnalysis.Dataset dataset, int targetVariable, int start, int end, bool updateTargetValues) {44 public override void Evaluate(IScope scope, ITreeEvaluator evaluator, IFunctionTree tree, HeuristicLab.DataAnalysis.Dataset dataset, int targetVariable, int start, int end, bool updateTargetValues) { 45 45 double errorsSquaredSum = 0.0; 46 46 double originalDeviationTotalSumOfSquares = 0.0; 47 47 double targetMean = dataset.GetMean(targetVariable, start, end); 48 49 double originalSum = 0.0; 50 int n = 0; 48 51 for (int sample = start; sample < end; sample++) { 49 double estimated = evaluator.Evaluate( sample);52 double estimated = evaluator.Evaluate(tree, sample); 50 53 double original = dataset.GetValue(sample, targetVariable); 51 54 if (updateTargetValues) { … … 56 59 errorsSquaredSum += error * error; 57 60 58 double origDeviation = original - targetMean; 59 originalDeviationTotalSumOfSquares += origDeviation * origDeviation; 61 originalSum += original; 62 n++; 63 } 64 } 65 66 double originalMean = originalSum / n; 67 for(int sample = start; sample < end; sample++){ 68 double original = dataset.GetValue(sample, targetVariable); 69 if (!double.IsNaN(original) && !double.IsInfinity(original)) { 70 original = original - originalMean; 71 original = original * original; 72 originalDeviationTotalSumOfSquares += original; 60 73 } 61 74 } -
trunk/sources/HeuristicLab.GP.StructureIdentification/3.3/Evaluators/EarlyStoppingMeanSquaredErrorEvaluator.cs
r1794 r1796 44 44 45 45 // evaluates the function-tree for the given target-variable and the whole dataset and returns the MSE 46 public override void Evaluate(IScope scope, BakedTreeEvaluator evaluator, HeuristicLab.DataAnalysis.Dataset dataset, int targetVariable, int start, int end, bool updateTargetValues) {46 public override void Evaluate(IScope scope, ITreeEvaluator evaluator, IFunctionTree tree, HeuristicLab.DataAnalysis.Dataset dataset, int targetVariable, int start, int end, bool updateTargetValues) { 47 47 double qualityLimit = GetVariableValue<DoubleData>("QualityLimit", scope, false).Data; 48 48 DoubleData mse = GetVariableValue<DoubleData>("MSE", scope, false, false); … … 56 56 int n = 0; 57 57 for (int sample = start; sample < end; sample++) { 58 double estimated = evaluator.Evaluate( sample);58 double estimated = evaluator.Evaluate(tree, sample); 59 59 double original = dataset.GetValue(sample, targetVariable); 60 60 if (updateTargetValues) { -
trunk/sources/HeuristicLab.GP.StructureIdentification/3.3/Evaluators/GPEvaluatorBase.cs
r712 r1796 33 33 public GPEvaluatorBase() 34 34 : base() { 35 AddVariableInfo(new VariableInfo("TreeEvaluator", "The evaluator that should be used to evaluate the expression tree", typeof(ITreeEvaluator), VariableKind.In)); 35 36 AddVariableInfo(new VariableInfo("FunctionTree", "The function tree that should be evaluated", typeof(IFunctionTree), VariableKind.In)); 36 37 AddVariableInfo(new VariableInfo("TreeSize", "Size (number of nodes) of the tree to evaluate", typeof(IntData), VariableKind.In)); … … 48 49 int targetVariable = GetVariableValue<IntData>("TargetVariable", scope, true).Data; 49 50 Dataset dataset = GetVariableValue<Dataset>("Dataset", scope, true); 50 BakedFunctionTree functionTree = GetVariableValue<BakedFunctionTree>("FunctionTree", scope, true);51 IFunctionTree functionTree = GetVariableValue<IFunctionTree>("FunctionTree", scope, true); 51 52 double punishmentFactor = GetVariableValue<DoubleData>("PunishmentFactor", scope, true).Data; 52 53 int treeSize = scope.GetVariableValue<IntData>("TreeSize", false).Data; … … 55 56 int end = GetVariableValue<IntData>("SamplesEnd", scope, true).Data; 56 57 bool useEstimatedValues = GetVariableValue<BoolData>("UseEstimatedTargetValue", scope, true).Data; 58 ITreeEvaluator evaluator = GetVariableValue<ITreeEvaluator>("TreeEvaluator", scope, true); 59 57 60 double[] backupValues = null; 58 61 // prepare for autoregressive modelling by saving the original values of the target-variable to a backup array … … 65 68 } 66 69 67 // initialize and reset the evaluator 68 BakedTreeEvaluator evaluator = new BakedTreeEvaluator(); 69 evaluator.ResetEvaluator(functionTree, dataset, targetVariable, start, end, punishmentFactor); 70 71 Evaluate(scope, evaluator, dataset, targetVariable, start, end, useEstimatedValues); 70 Evaluate(scope, evaluator, functionTree, dataset, targetVariable, start, end, useEstimatedValues); 72 71 73 72 // restore the values of the target variable from the backup array if necessary … … 83 82 } 84 83 85 public abstract void Evaluate(IScope scope, BakedTreeEvaluator evaluator, Dataset dataset, int targetVariable, int start, int end, bool updateTargetValues);84 public abstract void Evaluate(IScope scope, ITreeEvaluator evaluator, IFunctionTree tree, Dataset dataset, int targetVariable, int start, int end, bool updateTargetValues); 86 85 } 87 86 } -
trunk/sources/HeuristicLab.GP.StructureIdentification/3.3/Evaluators/MeanAbsolutePercentageErrorEvaluator.cs
r712 r1796 43 43 } 44 44 45 public override void Evaluate(IScope scope, BakedTreeEvaluator evaluator, Dataset dataset, int targetVariable, int start, int end, bool updateTargetValues) {45 public override void Evaluate(IScope scope, ITreeEvaluator evaluator, IFunctionTree tree, Dataset dataset, int targetVariable, int start, int end, bool updateTargetValues) { 46 46 double errorsSum = 0.0; 47 47 int n = 0; 48 48 for (int sample = start; sample < end; sample++) { 49 double estimated = evaluator.Evaluate( sample);49 double estimated = evaluator.Evaluate(tree, sample); 50 50 double original = dataset.GetValue(sample, targetVariable); 51 51 -
trunk/sources/HeuristicLab.GP.StructureIdentification/3.3/Evaluators/MeanAbsolutePercentageOfRangeErrorEvaluator.cs
r1287 r1796 43 43 } 44 44 45 public override void Evaluate(IScope scope, BakedTreeEvaluator evaluator, Dataset dataset, int targetVariable, int start, int end, bool updateTargetValues) {45 public override void Evaluate(IScope scope, ITreeEvaluator evaluator, IFunctionTree tree, Dataset dataset, int targetVariable, int start, int end, bool updateTargetValues) { 46 46 double errorsSum = 0.0; 47 47 int n = 0; 48 48 double range = dataset.GetRange(targetVariable, start, end); 49 49 for (int sample = start; sample < end; sample++) { 50 double estimated = evaluator.Evaluate( sample);50 double estimated = evaluator.Evaluate(tree, sample); 51 51 double original = dataset.GetValue(sample, targetVariable); 52 52 -
trunk/sources/HeuristicLab.GP.StructureIdentification/3.3/Evaluators/MeanSquaredErrorEvaluator.cs
r1794 r1796 43 43 } 44 44 45 public override void Evaluate(IScope scope, BakedTreeEvaluator evaluator, Dataset dataset, int targetVariable, int start, int end, bool updateTargetValues) {45 public override void Evaluate(IScope scope, ITreeEvaluator evaluator, IFunctionTree tree, Dataset dataset, int targetVariable, int start, int end, bool updateTargetValues) { 46 46 double errorsSquaredSum = 0; 47 47 int n = 0; 48 48 for (int sample = start; sample < end; sample++) { 49 49 double original = dataset.GetValue(sample, targetVariable); 50 double estimated = evaluator.Evaluate( sample);50 double estimated = evaluator.Evaluate(tree, sample); 51 51 if (updateTargetValues) { 52 52 dataset.SetValue(sample, targetVariable, estimated); -
trunk/sources/HeuristicLab.GP.StructureIdentification/3.3/Evaluators/SimpleEvaluator.cs
r712 r1796 36 36 } 37 37 38 public override void Evaluate(IScope scope, BakedTreeEvaluator evaluator, Dataset dataset, int targetVariable, int start, int end, bool updateTargetValues) {38 public override void Evaluate(IScope scope, ITreeEvaluator evaluator, IFunctionTree tree, Dataset dataset, int targetVariable, int start, int end, bool updateTargetValues) { 39 39 ItemList values = GetVariableValue<ItemList>("Values", scope, false, false); 40 40 if (values == null) { … … 50 50 for (int sample = start; sample < end; sample++) { 51 51 ItemList row = new ItemList(); 52 double estimated = evaluator.Evaluate( sample);52 double estimated = evaluator.Evaluate(tree, sample); 53 53 double original = dataset.GetValue(sample, targetVariable); 54 54 if (updateTargetValues) { -
trunk/sources/HeuristicLab.GP.StructureIdentification/3.3/Evaluators/UncertainMeanSquaredErrorEvaluator.cs
r769 r1796 50 50 51 51 // evaluates the function-tree for the given target-variable and the whole dataset and returns the MSE 52 public override void Evaluate(IScope scope, BakedTreeEvaluator evaluator, HeuristicLab.DataAnalysis.Dataset dataset, int targetVariable, int start, int end, bool updateTargetValues) {52 public override void Evaluate(IScope scope, ITreeEvaluator evaluator, IFunctionTree tree, HeuristicLab.DataAnalysis.Dataset dataset, int targetVariable, int start, int end, bool updateTargetValues) { 53 53 double qualityLimit = GetVariableValue<DoubleData>("QualityLimit", scope, false).Data; 54 54 int minSamples = GetVariableValue<IntData>("MinEvaluatedSamples", scope, true).Data; … … 78 78 int n = 0; 79 79 for (int sample = 0; sample < rows; sample++) { 80 double estimated = evaluator.Evaluate( indexes[sample]);80 double estimated = evaluator.Evaluate(tree, indexes[sample]); 81 81 double original = dataset.GetValue(indexes[sample], targetVariable); 82 82 if (!double.IsNaN(original) && !double.IsInfinity(original)) { -
trunk/sources/HeuristicLab.GP.StructureIdentification/3.3/Evaluators/VarianceAccountedForEvaluator.cs
r712 r1796 53 53 } 54 54 55 public override void Evaluate(IScope scope, BakedTreeEvaluator evaluator, Dataset dataset, int targetVariable, int start, int end, bool updateTargetValues) {55 public override void Evaluate(IScope scope, ITreeEvaluator evaluator, IFunctionTree tree, Dataset dataset, int targetVariable, int start, int end, bool updateTargetValues) { 56 56 int nSamples = end - start; 57 57 double[] errors = new double[nSamples]; 58 58 double[] originalTargetVariableValues = new double[nSamples]; 59 59 for (int sample = start; sample < end; sample++) { 60 double estimated = evaluator.Evaluate( sample);60 double estimated = evaluator.Evaluate(tree, sample); 61 61 double original = dataset.GetValue(sample, targetVariable); 62 62 if (updateTargetValues) { … … 66 66 errors[sample - start] = original - estimated; 67 67 originalTargetVariableValues[sample - start] = original; 68 } else { 69 errors[sample - start] = double.NaN; 70 originalTargetVariableValues[sample - start] = double.NaN; 68 71 } 69 72 } -
trunk/sources/HeuristicLab.GP.StructureIdentification/3.3/HeuristicLab.GP.StructureIdentification-3.3.csproj
r1572 r1796 89 89 <Compile Include="Constant.cs" /> 90 90 <Compile Include="AlgorithmBase.cs" /> 91 <Compile Include="TreeEvaluatorInjector.cs" /> 92 <Compile Include="ITreeEvaluator.cs" /> 91 93 <Compile Include="Evaluators\MeanAbsolutePercentageOfRangeErrorEvaluator.cs" /> 92 94 <Compile Include="FunctionLibraryInjector.cs" />
Note: See TracChangeset
for help on using the changeset viewer.