Changeset 17805
- Timestamp:
- 12/30/20 09:31:09 (4 years ago)
- Location:
- trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman
- Files:
-
- 122 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman1.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("I.6.20a exp(-theta**2/2)/sqrt(2*pi) | {0} samples | {1}", trainingSamples,30 return string.Format("I.6.20a exp(-theta**2/2)/sqrt(2*pi) | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 62 62 if (noiseRatio != null) { 63 63 var f_noise = new List<double>(); 64 var sigma_noise = (double) noiseRatio* f.StandardDeviationPop();64 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * f.StandardDeviationPop(); 65 65 f_noise.AddRange(f.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 66 66 data.Remove(f); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman10.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("I.12.4 q1/(4*pi*epsilon*r**2) | {0} samples | {1}", trainingSamples,30 return string.Format("I.12.4 q1/(4*pi*epsilon*r**2) | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 70 70 if (noiseRatio != null) { 71 71 var Ef_noise = new List<double>(); 72 var sigma_noise = (double) noiseRatio* Ef.StandardDeviationPop();72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * Ef.StandardDeviationPop(); 73 73 Ef_noise.AddRange(Ef.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(Ef); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman100.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("III.21.20 -rho_c_0*q*A_vec/m | {0} samples | {1}", trainingSamples,30 return string.Format("III.21.20 -rho_c_0*q*A_vec/m | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 72 72 if (noiseRatio != null) { 73 73 var j_noise = new List<double>(); 74 var sigma_noise = (double) noiseRatio* j.StandardDeviationPop();74 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * j.StandardDeviationPop(); 75 75 j_noise.AddRange(j.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 76 76 data.Remove(j); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman11.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("I.12.5 q2*Ef | {0} samples | {1}", trainingSamples,30 return string.Format("I.12.5 q2*Ef | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 68 68 if (noiseRatio != null) { 69 69 var F_noise = new List<double>(); 70 var sigma_noise = (double) noiseRatio* F.StandardDeviationPop();70 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * F.StandardDeviationPop(); 71 71 F_noise.AddRange(F.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 72 72 data.Remove(F); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman12.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("I.12.11 q*(Ef + B*v*sin(theta)) | {0} samples | {1}", trainingSamples,30 return string.Format("I.12.11 q*(Ef + B*v*sin(theta)) | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 74 74 if (noiseRatio != null) { 75 75 var F_noise = new List<double>(); 76 var sigma_noise = (double) noiseRatio* F.StandardDeviationPop();76 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * F.StandardDeviationPop(); 77 77 F_noise.AddRange(F.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 78 78 data.Remove(F); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman13.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("I.13.4 1/2*m*(v**2+u**2+w**2) | {0} samples | {1}", trainingSamples,30 return string.Format("I.13.4 1/2*m*(v**2+u**2+w**2) | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 72 72 if (noiseRatio != null) { 73 73 var K_noise = new List<double>(); 74 var sigma_noise = (double) noiseRatio* K.StandardDeviationPop();74 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * K.StandardDeviationPop(); 75 75 K_noise.AddRange(K.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 76 76 data.Remove(K); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman14.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("I.13.12 G*m1*m2*(1/r2-1/r1) | {0} samples | {1}", trainingSamples,30 return string.Format("I.13.12 G*m1*m2*(1/r2-1/r1) | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 74 74 if (noiseRatio != null) { 75 75 var U_noise = new List<double>(); 76 var sigma_noise = (double) noiseRatio* U.StandardDeviationPop();76 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * U.StandardDeviationPop(); 77 77 U_noise.AddRange(U.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 78 78 data.Remove(U); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman15.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("I.14.3 m*g*z | {0} samples | {1}", trainingSamples,30 return string.Format("I.14.3 m*g*z | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 70 70 if (noiseRatio != null) { 71 71 var U_noise = new List<double>(); 72 var sigma_noise = (double) noiseRatio* U.StandardDeviationPop();72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * U.StandardDeviationPop(); 73 73 U_noise.AddRange(U.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(U); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman16.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("I.14.4 1/2*k_spring*x**2 | {0} samples | {1}", trainingSamples,30 return string.Format("I.14.4 1/2*k_spring*x**2 | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 68 68 if (noiseRatio != null) { 69 69 var U_noise = new List<double>(); 70 var sigma_noise = (double) noiseRatio* U.StandardDeviationPop();70 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * U.StandardDeviationPop(); 71 71 U_noise.AddRange(U.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 72 72 data.Remove(U); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman17.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("I.15.3x (x-u*t)/sqrt(1-u**2/c**2) | {0} samples | {1}", trainingSamples,30 return string.Format("I.15.3x (x-u*t)/sqrt(1-u**2/c**2) | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 72 72 if (noiseRatio != null) { 73 73 var x1_noise = new List<double>(); 74 var sigma_noise = (double) noiseRatio* x1.StandardDeviationPop();74 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * x1.StandardDeviationPop(); 75 75 x1_noise.AddRange(x1.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 76 76 data.Remove(x1); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman18.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("I.15.3t (t-u*x/c**2)/sqrt(1-u**2/c**2) | {0} samples | {1}",31 trainingSamples,noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));30 return string.Format("I.15.3t (t-u*x/c**2)/sqrt(1-u**2/c**2) | {0}", 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } 33 33 } … … 72 72 if (noiseRatio != null) { 73 73 var t1_noise = new List<double>(); 74 var sigma_noise = (double) noiseRatio* t1.StandardDeviationPop();74 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * t1.StandardDeviationPop(); 75 75 t1_noise.AddRange(t1.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 76 76 data.Remove(t1); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman19.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("I.15.10 m_0*v/sqrt(1-v**2/c**2) | {0} samples | {1}", trainingSamples,30 return string.Format("I.15.10 m_0*v/sqrt(1-v**2/c**2) | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 70 70 if (noiseRatio != null) { 71 71 var p_noise = new List<double>(); 72 var sigma_noise = (double) noiseRatio* p.StandardDeviationPop();72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * p.StandardDeviationPop(); 73 73 p_noise.AddRange(p.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(p); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman2.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("I.6.20 exp(-(theta/sigma)**2/2)/(sqrt(2*pi)*sigma) | {0} samples | {1}",31 trainingSamples,noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));30 return string.Format("I.6.20 exp(-(theta/sigma)**2/2)/(sqrt(2*pi)*sigma) | {0}", 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } 33 33 } … … 68 68 if (noiseRatio != null) { 69 69 var f_noise = new List<double>(); 70 var sigma_noise = (double) noiseRatio* f.StandardDeviationPop();70 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * f.StandardDeviationPop(); 71 71 f_noise.AddRange(f.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 72 72 data.Remove(f); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman20.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("I.16.6 (u+v)/(1+u*v/c**2) | {0} samples | {1}", trainingSamples,30 return string.Format("I.16.6 (u+v)/(1+u*v/c**2) | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 70 70 if (noiseRatio != null) { 71 71 var v1_noise = new List<double>(); 72 var sigma_noise = (double) noiseRatio* v1.StandardDeviationPop();72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * v1.StandardDeviationPop(); 73 73 v1_noise.AddRange(v1.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(v1); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman21.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("I.18.4 (m1*r1 + m2*r2)/(m1 + m2) | {0} samples | {1}", trainingSamples,30 return string.Format("I.18.4 (m1*r1 + m2*r2)/(m1 + m2) | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 72 72 if (noiseRatio != null) { 73 73 var r_noise = new List<double>(); 74 var sigma_noise = (double) noiseRatio* r.StandardDeviationPop();74 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * r.StandardDeviationPop(); 75 75 r_noise.AddRange(r.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 76 76 data.Remove(r); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman22.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("I.18.12 r*F*sin(theta) | {0} samples | {1}", trainingSamples,30 return string.Format("I.18.12 r*F*sin(theta) | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 70 70 if (noiseRatio != null) { 71 71 var tau_noise = new List<double>(); 72 var sigma_noise = (double) noiseRatio* tau.StandardDeviationPop();72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * tau.StandardDeviationPop(); 73 73 tau_noise.AddRange(tau.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(tau); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman23.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("I.18.16 m*r*v*sin(theta) | {0} samples | {1}", trainingSamples,30 return string.Format("I.18.16 m*r*v*sin(theta) | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 72 72 if (noiseRatio != null) { 73 73 var L_noise = new List<double>(); 74 var sigma_noise = (double) noiseRatio* L.StandardDeviationPop();74 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * L.StandardDeviationPop(); 75 75 L_noise.AddRange(L.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 76 76 data.Remove(L); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman24.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("I.24.6 1/4*m*(omega**2 + omega_0**2)*x**2 | {0} samples | {1}",31 trainingSamples,noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));30 return string.Format("I.24.6 1/4*m*(omega**2 + omega_0**2)*x**2 | {0}", 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } 33 33 } … … 72 72 if (noiseRatio != null) { 73 73 var E_n_noise = new List<double>(); 74 var sigma_noise = (double) noiseRatio* E_n.StandardDeviationPop();74 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * E_n.StandardDeviationPop(); 75 75 E_n_noise.AddRange(E_n.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 76 76 data.Remove(E_n); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman25.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("I.25.13 q/C | {0} samples | {1}", trainingSamples,30 return string.Format("I.25.13 q/C | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 68 68 if (noiseRatio != null) { 69 69 var Volt_noise = new List<double>(); 70 var sigma_noise = (double) noiseRatio* Volt.StandardDeviationPop();70 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * Volt.StandardDeviationPop(); 71 71 Volt_noise.AddRange(Volt.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 72 72 data.Remove(Volt); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman26.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("I.26.2 arcsin(n*sin(theta2)) | {0} samples | {1}", trainingSamples,30 return string.Format("I.26.2 arcsin(n*sin(theta2)) | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 68 68 if (noiseRatio != null) { 69 69 var theta1_noise = new List<double>(); 70 var sigma_noise = (double) noiseRatio* theta1.StandardDeviationPop();70 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * theta1.StandardDeviationPop(); 71 71 theta1_noise.AddRange(theta1.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 72 72 data.Remove(theta1); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman27.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("I.27.6 1/(1/d1+n/d2) | {0} samples | {1}", trainingSamples,30 return string.Format("I.27.6 1/(1/d1+n/d2) | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 70 70 if (noiseRatio != null) { 71 71 var foc_noise = new List<double>(); 72 var sigma_noise = (double) noiseRatio* foc.StandardDeviationPop();72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * foc.StandardDeviationPop(); 73 73 foc_noise.AddRange(foc.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(foc); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman28.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("I.29.4 omega/c | {0} samples | {1}", trainingSamples,30 return string.Format("I.29.4 omega/c | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 68 68 if (noiseRatio != null) { 69 69 var k_noise = new List<double>(); 70 var sigma_noise = (double) noiseRatio* k.StandardDeviationPop();70 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * k.StandardDeviationPop(); 71 71 k_noise.AddRange(k.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 72 72 data.Remove(k); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman29.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("I.29.16 sqrt(x1**2+x2**2 - 2*x1*x2*cos(theta1 - theta2)) | {0} samples | {1}",31 trainingSamples,noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));30 return string.Format("I.29.16 sqrt(x1**2+x2**2 - 2*x1*x2*cos(theta1 - theta2)) | {0}", 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } 33 33 } … … 73 73 if (noiseRatio != null) { 74 74 var x_noise = new List<double>(); 75 var sigma_noise = (double) noiseRatio* x.StandardDeviationPop();75 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * x.StandardDeviationPop(); 76 76 x_noise.AddRange(x.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 77 77 data.Remove(x); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman3.cs
r17678 r17805 29 29 get { 30 30 return string.Format( 31 "I.6.20b exp(-((theta-theta1)/sigma)**2/2)/(sqrt(2*pi)*sigma) | {0} samples | {1}",32 trainingSamples,noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));31 "I.6.20b exp(-((theta-theta1)/sigma)**2/2)/(sqrt(2*pi)*sigma) | {0}", 32 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 33 33 } 34 34 } … … 71 71 if (noiseRatio != null) { 72 72 var f_noise = new List<double>(); 73 var sigma_noise = (double) noiseRatio* f.StandardDeviationPop();73 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * f.StandardDeviationPop(); 74 74 f_noise.AddRange(f.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 75 75 data.Remove(f); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman30.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("I.30.3 Int_0*sin(n*theta/2)**2/sin(theta/2)**2 | {0} samples | {1}",31 trainingSamples,noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));30 return string.Format("I.30.3 Int_0*sin(n*theta/2)**2/sin(theta/2)**2 | {0}", 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } 33 33 } … … 70 70 if (noiseRatio != null) { 71 71 var Int_noise = new List<double>(); 72 var sigma_noise = (double) noiseRatio* Int.StandardDeviationPop();72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * Int.StandardDeviationPop(); 73 73 Int_noise.AddRange(Int.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(Int); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman31.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("I.30.5 arcsin(lambd/(n*d)) | {0} samples | {1}", trainingSamples,30 return string.Format("I.30.5 arcsin(lambd/(n*d)) | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 70 70 if (noiseRatio != null) { 71 71 var theta_noise = new List<double>(); 72 var sigma_noise = (double) noiseRatio* theta.StandardDeviationPop();72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * theta.StandardDeviationPop(); 73 73 theta_noise.AddRange(theta.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(theta); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman32.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("I.32.5 q**2*a**2/(6*pi*epsilon*c**3) | {0} samples | {1}",31 trainingSamples,noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));30 return string.Format("I.32.5 q**2*a**2/(6*pi*epsilon*c**3) | {0}", 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } 33 33 } … … 72 72 if (noiseRatio != null) { 73 73 var Pwr_noise = new List<double>(); 74 var sigma_noise = (double) noiseRatio* Pwr.StandardDeviationPop();74 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * Pwr.StandardDeviationPop(); 75 75 Pwr_noise.AddRange(Pwr.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 76 76 data.Remove(Pwr); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman33.cs
r17678 r17805 29 29 get { 30 30 return string.Format( 31 "I.32.17 (1/2*epsilon*c*Ef**2)*(8*pi*r**2/3)*(omega**4/(omega**2-omega_0**2)**2) | {0} samples | {1}",32 trainingSamples,noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));31 "I.32.17 (1/2*epsilon*c*Ef**2)*(8*pi*r**2/3)*(omega**4/(omega**2-omega_0**2)**2) | {0}", 32 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 33 33 } 34 34 } … … 80 80 if (noiseRatio != null) { 81 81 var Pwr_noise = new List<double>(); 82 var sigma_noise = (double) noiseRatio* Pwr.StandardDeviationPop();82 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * Pwr.StandardDeviationPop(); 83 83 Pwr_noise.AddRange(Pwr.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 84 84 data.Remove(Pwr); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman34.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("I.34.8 q*v*B/p | {0} samples | {1}", trainingSamples,30 return string.Format("I.34.8 q*v*B/p | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 72 72 if (noiseRatio != null) { 73 73 var omega_noise = new List<double>(); 74 var sigma_noise = (double) noiseRatio* omega.StandardDeviationPop();74 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * omega.StandardDeviationPop(); 75 75 omega_noise.AddRange(omega.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 76 76 data.Remove(omega); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman35.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("I.34.10 omega_0/(1-v/c) | {0} samples | {1}", trainingSamples,30 return string.Format("I.34.10 omega_0/(1-v/c) | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 70 70 if (noiseRatio != null) { 71 71 var omega_noise = new List<double>(); 72 var sigma_noise = (double) noiseRatio* omega.StandardDeviationPop();72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * omega.StandardDeviationPop(); 73 73 omega_noise.AddRange(omega.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(omega); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman36.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("I.34.14 (1+v/c)/sqrt(1-v**2/c**2)*omega_0 | {0} samples | {1}",31 trainingSamples,noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));30 return string.Format("I.34.14 (1+v/c)/sqrt(1-v**2/c**2)*omega_0 | {0}", 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } 33 33 } … … 70 70 if (noiseRatio != null) { 71 71 var omega_noise = new List<double>(); 72 var sigma_noise = (double) noiseRatio* omega.StandardDeviationPop();72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * omega.StandardDeviationPop(); 73 73 omega_noise.AddRange(omega.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(omega); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman37.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("I.34.27 h*omega | {0} samples | {1}", trainingSamples,30 return string.Format("I.34.27 h*omega | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 68 68 if (noiseRatio != null) { 69 69 var E_n_noise = new List<double>(); 70 var sigma_noise = (double) noiseRatio* E_n.StandardDeviationPop();70 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * E_n.StandardDeviationPop(); 71 71 E_n_noise.AddRange(E_n.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 72 72 data.Remove(E_n); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman38.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("I.37.4 I1 + I2 + 2*sqrt(I1*I2)*cos(delta) | {0} samples | {1}",31 trainingSamples,noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));30 return string.Format("I.37.4 I1 + I2 + 2*sqrt(I1*I2)*cos(delta) | {0}", 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } 33 33 } … … 70 70 if (noiseRatio != null) { 71 71 var Int_noise = new List<double>(); 72 var sigma_noise = (double) noiseRatio* Int.StandardDeviationPop();72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * Int.StandardDeviationPop(); 73 73 Int_noise.AddRange(Int.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(Int); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman39.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("I.38.12 4*pi*epsilon*h**2/(m*q**2) | {0} samples | {1}",31 trainingSamples,noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));30 return string.Format("I.38.12 4*pi*epsilon*h**2/(m*q**2) | {0}", 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } 33 33 } … … 72 72 if (noiseRatio != null) { 73 73 var r_noise = new List<double>(); 74 var sigma_noise = (double) noiseRatio* r.StandardDeviationPop();74 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * r.StandardDeviationPop(); 75 75 r_noise.AddRange(r.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 76 76 data.Remove(r); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman4.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("I.8.14 sqrt((x2-x1)**2+(y2-y1)**2) | {0} samples | {1}", trainingSamples,30 return string.Format("I.8.14 sqrt((x2-x1)**2+(y2-y1)**2) | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 72 72 if (noiseRatio != null) { 73 73 var d_noise = new List<double>(); 74 var sigma_noise = (double) noiseRatio* d.StandardDeviationPop();74 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * d.StandardDeviationPop(); 75 75 d_noise.AddRange(d.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 76 76 data.Remove(d); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman40.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("I.39.10 3/2*pF*V | {0} samples | {1}", trainingSamples,30 return string.Format("I.39.10 3/2*pF*V | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 68 68 if (noiseRatio != null) { 69 69 var E_n_noise = new List<double>(); 70 var sigma_noise = (double) noiseRatio* E_n.StandardDeviationPop();70 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * E_n.StandardDeviationPop(); 71 71 E_n_noise.AddRange(E_n.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 72 72 data.Remove(E_n); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman41.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("I.39.11 1/(gamma-1)*pF*V | {0} samples | {1}", trainingSamples,30 return string.Format("I.39.11 1/(gamma-1)*pF*V | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 70 70 if (noiseRatio != null) { 71 71 var E_n_noise = new List<double>(); 72 var sigma_noise = (double) noiseRatio* E_n.StandardDeviationPop();72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * E_n.StandardDeviationPop(); 73 73 E_n_noise.AddRange(E_n.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(E_n); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman42.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("I.39.22 n*kb*T/V | {0} samples | {1}", trainingSamples,30 return string.Format("I.39.22 n*kb*T/V | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 72 72 if (noiseRatio != null) { 73 73 var pr_noise = new List<double>(); 74 var sigma_noise = (double) noiseRatio* pr.StandardDeviationPop();74 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * pr.StandardDeviationPop(); 75 75 pr_noise.AddRange(pr.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 76 76 data.Remove(pr); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman43.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("I.40.1 n_0*exp(-m*g*x/(kb*T)) | {0} samples | {1}", trainingSamples,30 return string.Format("I.40.1 n_0*exp(-m*g*x/(kb*T)) | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 76 76 if (noiseRatio != null) { 77 77 var n_noise = new List<double>(); 78 var sigma_noise = (double) noiseRatio* n.StandardDeviationPop();78 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * n.StandardDeviationPop(); 79 79 n_noise.AddRange(n.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 80 80 data.Remove(n); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman44.cs
r17678 r17805 29 29 get { 30 30 return string.Format( 31 "I.41.16 h*omega**3/(pi**2 * c**2 * (exp(h*omega/(kb*T))-1)) | {0} samples | {1}",32 trainingSamples,noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));31 "I.41.16 h*omega**3/(pi**2 * c**2 * (exp(h*omega/(kb*T))-1)) | {0}", 32 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 33 33 } 34 34 } … … 77 77 if (noiseRatio != null) { 78 78 var L_rad_noise = new List<double>(); 79 var sigma_noise = (double) noiseRatio* L_rad.StandardDeviationPop();79 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * L_rad.StandardDeviationPop(); 80 80 L_rad_noise.AddRange(L_rad.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 81 81 data.Remove(L_rad); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman45.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("I.43.16 mu_drift*q*Volt/d | {0} samples | {1}", trainingSamples,30 return string.Format("I.43.16 mu_drift*q*Volt/d | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 72 72 if (noiseRatio != null) { 73 73 var v_noise = new List<double>(); 74 var sigma_noise = (double) noiseRatio* v.StandardDeviationPop();74 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * v.StandardDeviationPop(); 75 75 v_noise.AddRange(v.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 76 76 data.Remove(v); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman46.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("I.43.31 mob*kb*T | {0} samples | {1}", trainingSamples,30 return string.Format("I.43.31 mob*kb*T | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 70 70 if (noiseRatio != null) { 71 71 var D_noise = new List<double>(); 72 var sigma_noise = (double) noiseRatio* D.StandardDeviationPop();72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * D.StandardDeviationPop(); 73 73 D_noise.AddRange(D.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(D); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman47.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("I.43.43 1/(gamma-1)*kb*v/A | {0} samples | {1}", trainingSamples,30 return string.Format("I.43.43 1/(gamma-1)*kb*v/A | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 72 72 if (noiseRatio != null) { 73 73 var kappa_noise = new List<double>(); 74 var sigma_noise = (double) noiseRatio* kappa.StandardDeviationPop();74 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * kappa.StandardDeviationPop(); 75 75 kappa_noise.AddRange(kappa.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 76 76 data.Remove(kappa); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman48.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("I.44.4 n*kb*T*ln(V2/V1) | {0} samples | {1}", trainingSamples,30 return string.Format("I.44.4 n*kb*T*ln(V2/V1) | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 74 74 if (noiseRatio != null) { 75 75 var E_n_noise = new List<double>(); 76 var sigma_noise = (double) noiseRatio* E_n.StandardDeviationPop();76 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * E_n.StandardDeviationPop(); 77 77 E_n_noise.AddRange(E_n.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 78 78 data.Remove(E_n); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman49.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("I.47.23 sqrt(gamma*pr/rho) | {0} samples | {1}", trainingSamples,30 return string.Format("I.47.23 sqrt(gamma*pr/rho) | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 70 70 if (noiseRatio != null) { 71 71 var c_noise = new List<double>(); 72 var sigma_noise = (double) noiseRatio* c.StandardDeviationPop();72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * c.StandardDeviationPop(); 73 73 c_noise.AddRange(c.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(c); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman5.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("I.9.18 G*m1*m2/((x2-x1)**2+(y2-y1)**2+(z2-z1)**2) | {0} samples | {1}",31 trainingSamples,noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));30 return string.Format("I.9.18 G*m1*m2/((x2-x1)**2+(y2-y1)**2+(z2-z1)**2) | {0}", 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } 33 33 } … … 85 85 if (noiseRatio != null) { 86 86 var F_noise = new List<double>(); 87 var sigma_noise = (double) noiseRatio* F.StandardDeviationPop();87 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * F.StandardDeviationPop(); 88 88 F_noise.AddRange(F.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 89 89 data.Remove(F); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman50.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("I.48.2 m*c**2/sqrt(1-v**2/c**2) | {0} samples | {1}", trainingSamples,30 return string.Format("I.48.2 m*c**2/sqrt(1-v**2/c**2) | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 70 70 if (noiseRatio != null) { 71 71 var E_n_noise = new List<double>(); 72 var sigma_noise = (double) noiseRatio* E_n.StandardDeviationPop();72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * E_n.StandardDeviationPop(); 73 73 E_n_noise.AddRange(E_n.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(E_n); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman51.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("I.50.26 x1*(cos(omega*t)+alpha*cos(omega*t)**2) | {0} samples | {1}",31 trainingSamples,noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));30 return string.Format("I.50.26 x1*(cos(omega*t)+alpha*cos(omega*t)**2) | {0}", 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } 33 33 } … … 72 72 if (noiseRatio != null) { 73 73 var x_noise = new List<double>(); 74 var sigma_noise = (double) noiseRatio* x.StandardDeviationPop();74 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * x.StandardDeviationPop(); 75 75 x_noise.AddRange(x.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 76 76 data.Remove(x); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman52.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("II.2.42 kappa*(T2-T1)*A/d | {0} samples | {1}", trainingSamples,30 return string.Format("II.2.42 kappa*(T2-T1)*A/d | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 74 74 if (noiseRatio != null) { 75 75 var Pwr_noise = new List<double>(); 76 var sigma_noise = (double) noiseRatio* Pwr.StandardDeviationPop();76 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * Pwr.StandardDeviationPop(); 77 77 Pwr_noise.AddRange(Pwr.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 78 78 data.Remove(Pwr); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman53.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("II.3.24 Pwr/(4*pi*r**2) | {0} samples | {1}", trainingSamples,30 return string.Format("II.3.24 Pwr/(4*pi*r**2) | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 68 68 if (noiseRatio != null) { 69 69 var flux_noise = new List<double>(); 70 var sigma_noise = (double) noiseRatio* flux.StandardDeviationPop();70 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * flux.StandardDeviationPop(); 71 71 flux_noise.AddRange(flux.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 72 72 data.Remove(flux); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman54.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("II.4.23 q/(4*pi*epsilon*r) | {0} samples | {1}", trainingSamples,30 return string.Format("II.4.23 q/(4*pi*epsilon*r) | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 70 70 if (noiseRatio != null) { 71 71 var Volt_noise = new List<double>(); 72 var sigma_noise = (double) noiseRatio* Volt.StandardDeviationPop();72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * Volt.StandardDeviationPop(); 73 73 Volt_noise.AddRange(Volt.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(Volt); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman55.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("II.6.11 1/(4*pi*epsilon)*p_d*cos(theta)/r**2 | {0} samples | {1}",31 trainingSamples,noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));30 return string.Format("II.6.11 1/(4*pi*epsilon)*p_d*cos(theta)/r**2 | {0}", 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } 33 33 } … … 72 72 if (noiseRatio != null) { 73 73 var Volt_noise = new List<double>(); 74 var sigma_noise = (double) noiseRatio* Volt.StandardDeviationPop();74 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * Volt.StandardDeviationPop(); 75 75 Volt_noise.AddRange(Volt.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 76 76 data.Remove(Volt); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman56.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("II.6.15a 3/(4*pi*epsilon)*p_d*z/r**5*sqrt(x**2+y**2) | {0} samples | {1}",31 trainingSamples,noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));30 return string.Format("II.6.15a 3/(4*pi*epsilon)*p_d*z/r**5*sqrt(x**2+y**2) | {0}", 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } 33 33 } … … 77 77 if (noiseRatio != null) { 78 78 var Ef_noise = new List<double>(); 79 var sigma_noise = (double) noiseRatio* Ef.StandardDeviationPop();79 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * Ef.StandardDeviationPop(); 80 80 Ef_noise.AddRange(Ef.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 81 81 data.Remove(Ef); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman57.cs
r17678 r17805 29 29 get { 30 30 return string.Format( 31 "II.6.15b 3/(4*pi*epsilon)*p_d/r**3*cos(theta)*sin(theta) | {0} samples | {1}",32 trainingSamples,noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));31 "II.6.15b 3/(4*pi*epsilon)*p_d/r**3*cos(theta)*sin(theta) | {0}", 32 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 33 33 } 34 34 } … … 73 73 if (noiseRatio != null) { 74 74 var Ef_noise = new List<double>(); 75 var sigma_noise = (double) noiseRatio* Ef.StandardDeviationPop();75 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * Ef.StandardDeviationPop(); 76 76 Ef_noise.AddRange(Ef.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 77 77 data.Remove(Ef); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman58.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("II.8.7 3/5*q**2/(4*pi*epsilon*d) | {0} samples | {1}", trainingSamples,30 return string.Format("II.8.7 3/5*q**2/(4*pi*epsilon*d) | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 70 70 if (noiseRatio != null) { 71 71 var E_n_noise = new List<double>(); 72 var sigma_noise = (double) noiseRatio* E_n.StandardDeviationPop();72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * E_n.StandardDeviationPop(); 73 73 E_n_noise.AddRange(E_n.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(E_n); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman59.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("II.8.31 epsilon*Ef**2/2 | {0} samples | {1}", trainingSamples,30 return string.Format("II.8.31 epsilon*Ef**2/2 | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 68 68 if (noiseRatio != null) { 69 69 var E_den_noise = new List<double>(); 70 var sigma_noise = (double) noiseRatio* E_den.StandardDeviationPop();70 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * E_den.StandardDeviationPop(); 71 71 E_den_noise.AddRange(E_den.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 72 72 data.Remove(E_den); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman6.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("I.10.7 m_0/sqrt(1-v**2/c**2) | {0} samples | {1}", trainingSamples,30 return string.Format("I.10.7 m_0/sqrt(1-v**2/c**2) | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 70 70 if (noiseRatio != null) { 71 71 var m_noise = new List<double>(); 72 var sigma_noise = (double) noiseRatio* m.StandardDeviationPop();72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * m.StandardDeviationPop(); 73 73 m_noise.AddRange(m.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(m); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman60.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("II.10.9 sigma_den/epsilon*1/(1+chi) | {0} samples | {1}", trainingSamples,30 return string.Format("II.10.9 sigma_den/epsilon*1/(1+chi) | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 70 70 if (noiseRatio != null) { 71 71 var Ef_noise = new List<double>(); 72 var sigma_noise = (double) noiseRatio* Ef.StandardDeviationPop();72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * Ef.StandardDeviationPop(); 73 73 Ef_noise.AddRange(Ef.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(Ef); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman61.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("II.11.3 q*Ef/(m*(omega_0**2-omega**2)) | {0} samples | {1}",31 trainingSamples,noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));30 return string.Format("II.11.3 q*Ef/(m*(omega_0**2-omega**2)) | {0}", 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } 33 33 } … … 74 74 if (noiseRatio != null) { 75 75 var x_noise = new List<double>(); 76 var sigma_noise = (double) noiseRatio* x.StandardDeviationPop();76 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * x.StandardDeviationPop(); 77 77 x_noise.AddRange(x.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 78 78 data.Remove(x); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman62.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("II.11.17 n_0*(1 + p_d*Ef*cos(theta)/(kb*T)) | {0} samples | {1}",31 trainingSamples,noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));30 return string.Format("II.11.17 n_0*(1 + p_d*Ef*cos(theta)/(kb*T)) | {0}", 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } 33 33 } … … 76 76 if (noiseRatio != null) { 77 77 var n_noise = new List<double>(); 78 var sigma_noise = (double) noiseRatio* n.StandardDeviationPop();78 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * n.StandardDeviationPop(); 79 79 n_noise.AddRange(n.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 80 80 data.Remove(n); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman63.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("II.11.20 n_rho*p_d**2*Ef/(3*kb*T) | {0} samples | {1}", trainingSamples,30 return string.Format("II.11.20 n_rho*p_d**2*Ef/(3*kb*T) | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 74 74 if (noiseRatio != null) { 75 75 var Pol_noise = new List<double>(); 76 var sigma_noise = (double) noiseRatio* Pol.StandardDeviationPop();76 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * Pol.StandardDeviationPop(); 77 77 Pol_noise.AddRange(Pol.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 78 78 data.Remove(Pol); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman64.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("II.11.27 n*alpha/(1-(n*alpha/3))*epsilon*Ef | {0} samples | {1}",31 trainingSamples,noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));30 return string.Format("II.11.27 n*alpha/(1-(n*alpha/3))*epsilon*Ef | {0}", 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } 33 33 } … … 72 72 if (noiseRatio != null) { 73 73 var Pol_noise = new List<double>(); 74 var sigma_noise = (double) noiseRatio* Pol.StandardDeviationPop();74 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * Pol.StandardDeviationPop(); 75 75 Pol_noise.AddRange(Pol.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 76 76 data.Remove(Pol); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman65.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("II.11.28 1+n*alpha/(1-(n*alpha/3)) | {0} samples | {1}", trainingSamples,30 return string.Format("II.11.28 1+n*alpha/(1-(n*alpha/3)) | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 68 68 if (noiseRatio != null) { 69 69 var theta_noise = new List<double>(); 70 var sigma_noise = (double) noiseRatio* theta.StandardDeviationPop();70 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * theta.StandardDeviationPop(); 71 71 theta_noise.AddRange(theta.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 72 72 data.Remove(theta); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman66.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("II.13.17 1/(4*pi*epsilon*c**2)*2*I/r | {0} samples | {1}",31 trainingSamples,noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));30 return string.Format("II.13.17 1/(4*pi*epsilon*c**2)*2*I/r | {0}", 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } 33 33 } … … 72 72 if (noiseRatio != null) { 73 73 var B_noise = new List<double>(); 74 var sigma_noise = (double) noiseRatio* B.StandardDeviationPop();74 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * B.StandardDeviationPop(); 75 75 B_noise.AddRange(B.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 76 76 data.Remove(B); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman67.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("II.13.23 rho_c_0/sqrt(1-v**2/c**2) | {0} samples | {1}", trainingSamples,30 return string.Format("II.13.23 rho_c_0/sqrt(1-v**2/c**2) | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 70 70 if (noiseRatio != null) { 71 71 var rho_c_noise = new List<double>(); 72 var sigma_noise = (double) noiseRatio* rho_c.StandardDeviationPop();72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * rho_c.StandardDeviationPop(); 73 73 rho_c_noise.AddRange(rho_c.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(rho_c); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman68.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("II.13.34 rho_c_0*v/sqrt(1-v**2/c**2) | {0} samples | {1}",31 trainingSamples,noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));30 return string.Format("II.13.34 rho_c_0*v/sqrt(1-v**2/c**2) | {0}", 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } 33 33 } … … 70 70 if (noiseRatio != null) { 71 71 var j_noise = new List<double>(); 72 var sigma_noise = (double) noiseRatio* j.StandardDeviationPop();72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * j.StandardDeviationPop(); 73 73 j_noise.AddRange(j.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(j); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman69.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("II.15.4 -mom*B*cos(theta) | {0} samples | {1}", trainingSamples,30 return string.Format("II.15.4 -mom*B*cos(theta) | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 70 70 if (noiseRatio != null) { 71 71 var E_n_noise = new List<double>(); 72 var sigma_noise = (double) noiseRatio* E_n.StandardDeviationPop();72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * E_n.StandardDeviationPop(); 73 73 E_n_noise.AddRange(E_n.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(E_n); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman7.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("I.11.19 x1*y1+x2*y2+x3*y3 | {0} samples | {1}", trainingSamples,30 return string.Format("I.11.19 x1*y1+x2*y2+x3*y3 | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 76 76 if (noiseRatio != null) { 77 77 var A_noise = new List<double>(); 78 var sigma_noise = (double) noiseRatio* A.StandardDeviationPop();78 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * A.StandardDeviationPop(); 79 79 A_noise.AddRange(A.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 80 80 data.Remove(A); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman70.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("II.15.5 -p_d*Ef*cos(theta) | {0} samples | {1}", trainingSamples,30 return string.Format("II.15.5 -p_d*Ef*cos(theta) | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 70 70 if (noiseRatio != null) { 71 71 var E_n_noise = new List<double>(); 72 var sigma_noise = (double) noiseRatio* E_n.StandardDeviationPop();72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * E_n.StandardDeviationPop(); 73 73 E_n_noise.AddRange(E_n.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(E_n); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman71.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("II.21.32 q/(4*pi*epsilon*r*(1-v/c)) | {0} samples | {1}", trainingSamples,30 return string.Format("II.21.32 q/(4*pi*epsilon*r*(1-v/c)) | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 74 74 if (noiseRatio != null) { 75 75 var Volt_noise = new List<double>(); 76 var sigma_noise = (double) noiseRatio* Volt.StandardDeviationPop();76 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * Volt.StandardDeviationPop(); 77 77 Volt_noise.AddRange(Volt.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 78 78 data.Remove(Volt); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman72.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("II.24.17 sqrt(omega**2/c**2-pi**2/d**2) | {0} samples | {1}",31 trainingSamples,noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));30 return string.Format("II.24.17 sqrt(omega**2/c**2-pi**2/d**2) | {0}", 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } 33 33 } … … 70 70 if (noiseRatio != null) { 71 71 var k_noise = new List<double>(); 72 var sigma_noise = (double) noiseRatio* k.StandardDeviationPop();72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * k.StandardDeviationPop(); 73 73 k_noise.AddRange(k.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(k); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman73.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("II.27.16 epsilon*c*Ef**2 | {0} samples | {1}", trainingSamples,30 return string.Format("II.27.16 epsilon*c*Ef**2 | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 70 70 if (noiseRatio != null) { 71 71 var flux_noise = new List<double>(); 72 var sigma_noise = (double) noiseRatio* flux.StandardDeviationPop();72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * flux.StandardDeviationPop(); 73 73 flux_noise.AddRange(flux.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(flux); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman74.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("II.27.18 epsilon*Ef**2 | {0} samples | {1}", trainingSamples,30 return string.Format("II.27.18 epsilon*Ef**2 | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 68 68 if (noiseRatio != null) { 69 69 var E_den_noise = new List<double>(); 70 var sigma_noise = (double) noiseRatio* E_den.StandardDeviationPop();70 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * E_den.StandardDeviationPop(); 71 71 E_den_noise.AddRange(E_den.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 72 72 data.Remove(E_den); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman75.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("II.34.2a q*v/(2*pi*r) | {0} samples | {1}", trainingSamples,30 return string.Format("II.34.2a q*v/(2*pi*r) | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 70 70 if (noiseRatio != null) { 71 71 var I_noise = new List<double>(); 72 var sigma_noise = (double) noiseRatio* I.StandardDeviationPop();72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * I.StandardDeviationPop(); 73 73 I_noise.AddRange(I.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(I); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman76.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("II.34.2 q*v*r/2 | {0} samples | {1}", trainingSamples,30 return string.Format("II.34.2 q*v*r/2 | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 70 70 if (noiseRatio != null) { 71 71 var mom_noise = new List<double>(); 72 var sigma_noise = (double) noiseRatio* mom.StandardDeviationPop();72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * mom.StandardDeviationPop(); 73 73 mom_noise.AddRange(mom.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(mom); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman77.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("II.34.11 g_*q*B/(2*m) | {0} samples | {1}", trainingSamples,30 return string.Format("II.34.11 g_*q*B/(2*m) | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 72 72 if (noiseRatio != null) { 73 73 var omega_noise = new List<double>(); 74 var sigma_noise = (double) noiseRatio* omega.StandardDeviationPop();74 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * omega.StandardDeviationPop(); 75 75 omega_noise.AddRange(omega.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 76 76 data.Remove(omega); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman78.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("II.34.29a q*h/(4*pi*m) | {0} samples | {1}", trainingSamples,30 return string.Format("II.34.29a q*h/(4*pi*m) | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 70 70 if (noiseRatio != null) { 71 71 var mom_noise = new List<double>(); 72 var sigma_noise = (double) noiseRatio* mom.StandardDeviationPop();72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * mom.StandardDeviationPop(); 73 73 mom_noise.AddRange(mom.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(mom); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman79.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("II.34.29b g_*mom*B*Jz/h | {0} samples | {1}", trainingSamples,30 return string.Format("II.34.29b g_*mom*B*Jz/h | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 74 74 if (noiseRatio != null) { 75 75 var E_n_noise = new List<double>(); 76 var sigma_noise = (double) noiseRatio* E_n.StandardDeviationPop();76 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * E_n.StandardDeviationPop(); 77 77 E_n_noise.AddRange(E_n.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 78 78 data.Remove(E_n); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman8.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("I.12.1 mu*Nn | {0} samples | {1}", trainingSamples,30 return string.Format("I.12.1 mu*Nn | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 68 68 if (noiseRatio != null) { 69 69 var F_noise = new List<double>(); 70 var sigma_noise = (double) noiseRatio* F.StandardDeviationPop();70 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * F.StandardDeviationPop(); 71 71 F_noise.AddRange(F.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 72 72 data.Remove(F); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman80.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("II.35.18 n_0/(exp(mom*B/(kb*T))+exp(-mom*B/(kb*T))) | {0} samples | {1}",31 trainingSamples,noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));30 return string.Format("II.35.18 n_0/(exp(mom*B/(kb*T))+exp(-mom*B/(kb*T))) | {0}", 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } 33 33 } … … 74 74 if (noiseRatio != null) { 75 75 var n_noise = new List<double>(); 76 var sigma_noise = (double) noiseRatio* n.StandardDeviationPop();76 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * n.StandardDeviationPop(); 77 77 n_noise.AddRange(n.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 78 78 data.Remove(n); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman81.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("II.35.21 n_rho*mom*tanh(mom*B/(kb*T)) | {0} samples | {1}",31 trainingSamples,noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));30 return string.Format("II.35.21 n_rho*mom*tanh(mom*B/(kb*T)) | {0}", 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } 33 33 } … … 74 74 if (noiseRatio != null) { 75 75 var M_noise = new List<double>(); 76 var sigma_noise = (double) noiseRatio* M.StandardDeviationPop();76 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * M.StandardDeviationPop(); 77 77 M_noise.AddRange(M.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 78 78 data.Remove(M); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman82.cs
r17678 r17805 29 29 get { 30 30 return string.Format( 31 "II.36.38 mom*B/(kb*T)+(mom*alpha*M)/(epsilon*c**2*kb*T) | {0} samples | {1}",32 trainingSamples,noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));31 "II.36.38 mom*B/(kb*T)+(mom*alpha*M)/(epsilon*c**2*kb*T) | {0}", 32 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 33 33 } 34 34 } … … 84 84 if (noiseRatio != null) { 85 85 var f_noise = new List<double>(); 86 var sigma_noise = (double) noiseRatio* f.StandardDeviationPop();86 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * f.StandardDeviationPop(); 87 87 f_noise.AddRange(f.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 88 88 data.Remove(f); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman83.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("II.37.1 mom*(1+chi)*B | {0} samples | {1}", trainingSamples,30 return string.Format("II.37.1 mom*(1+chi)*B | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 70 70 if (noiseRatio != null) { 71 71 var E_n_noise = new List<double>(); 72 var sigma_noise = (double) noiseRatio* E_n.StandardDeviationPop();72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * E_n.StandardDeviationPop(); 73 73 E_n_noise.AddRange(E_n.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(E_n); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman84.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("II.38.3 Y*A*x/d | {0} samples | {1}", trainingSamples,30 return string.Format("II.38.3 Y*A*x/d | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 72 72 if (noiseRatio != null) { 73 73 var F_noise = new List<double>(); 74 var sigma_noise = (double) noiseRatio* F.StandardDeviationPop();74 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * F.StandardDeviationPop(); 75 75 F_noise.AddRange(F.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 76 76 data.Remove(F); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman85.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("II.38.14 Y/(2*(1+sigma)) | {0} samples | {1}", trainingSamples,30 return string.Format("II.38.14 Y/(2*(1+sigma)) | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 68 68 if (noiseRatio != null) { 69 69 var mu_S_noise = new List<double>(); 70 var sigma_noise = (double) noiseRatio* mu_S.StandardDeviationPop();70 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * mu_S.StandardDeviationPop(); 71 71 mu_S_noise.AddRange(mu_S.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 72 72 data.Remove(mu_S); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman86.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("III.4.32 1/(exp(h*omega/(kb*T))-1) | {0} samples | {1}",31 trainingSamples,noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));30 return string.Format("III.4.32 1/(exp(h*omega/(kb*T))-1) | {0}", 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } 33 33 } … … 72 72 if (noiseRatio != null) { 73 73 var n_noise = new List<double>(); 74 var sigma_noise = (double) noiseRatio* n.StandardDeviationPop();74 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * n.StandardDeviationPop(); 75 75 n_noise.AddRange(n.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 76 76 data.Remove(n); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman87.cs
r17678 r17805 29 29 get { 30 30 return string.Format( 31 "III.4.33 h*omega/(exp(h*omega/(kb*T))-1) | {0} samples | {1}",32 trainingSamples,noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));31 "III.4.33 h*omega/(exp(h*omega/(kb*T))-1) | {0}", 32 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 33 33 } 34 34 } … … 73 73 if (noiseRatio != null) { 74 74 var E_n_noise = new List<double>(); 75 var sigma_noise = (double) noiseRatio* E_n.StandardDeviationPop();75 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * E_n.StandardDeviationPop(); 76 76 E_n_noise.AddRange(E_n.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 77 77 data.Remove(E_n); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman88.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("III.7.38 2*mom*B/h | {0} samples | {1}", trainingSamples,30 return string.Format("III.7.38 2*mom*B/h | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 70 70 if (noiseRatio != null) { 71 71 var omega_noise = new List<double>(); 72 var sigma_noise = (double) noiseRatio* omega.StandardDeviationPop();72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * omega.StandardDeviationPop(); 73 73 omega_noise.AddRange(omega.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(omega); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman89.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("III.8.54 sin(E_n*t/h)**2 | {0} samples | {1}", trainingSamples,30 return string.Format("III.8.54 sin(E_n*t/h)**2 | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 70 70 if (noiseRatio != null) { 71 71 var prob_noise = new List<double>(); 72 var sigma_noise = (double) noiseRatio* prob.StandardDeviationPop();72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * prob.StandardDeviationPop(); 73 73 prob_noise.AddRange(prob.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(prob); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman9.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("I.12.2 q1*q2/(4*pi*epsilon*r**2) | {0} samples | {1}", trainingSamples,30 return string.Format("I.12.2 q1*q2/(4*pi*epsilon*r**2) | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 72 72 if (noiseRatio != null) { 73 73 var F_noise = new List<double>(); 74 var sigma_noise = (double) noiseRatio* F.StandardDeviationPop();74 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * F.StandardDeviationPop(); 75 75 F_noise.AddRange(F.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 76 76 data.Remove(F); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman90.cs
r17678 r17805 29 29 get { 30 30 return string.Format( 31 "III.9.52 (p_d*Ef*t/h*sin((omega-omega_0)*t/2)**2/((omega-omega_0)*t/2)**2 | {0} samples | {1}",32 trainingSamples,noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));31 "III.9.52 (p_d*Ef*t/h*sin((omega-omega_0)*t/2)**2/((omega-omega_0)*t/2)**2 | {0}", 32 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 33 33 } 34 34 } … … 81 81 if (noiseRatio != null) { 82 82 var prob_noise = new List<double>(); 83 var sigma_noise = (double) noiseRatio* prob.StandardDeviationPop();83 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * prob.StandardDeviationPop(); 84 84 prob_noise.AddRange(prob.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 85 85 data.Remove(prob); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman91.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("III.10.19 mom*sqrt(Bx**2+By**2+Bz**2) | {0} samples | {1}",31 trainingSamples,noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));30 return string.Format("III.10.19 mom*sqrt(Bx**2+By**2+Bz**2) | {0}", 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } 33 33 } … … 72 72 if (noiseRatio != null) { 73 73 var E_n_noise = new List<double>(); 74 var sigma_noise = (double) noiseRatio* E_n.StandardDeviationPop();74 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * E_n.StandardDeviationPop(); 75 75 E_n_noise.AddRange(E_n.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 76 76 data.Remove(E_n); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman92.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("III.12.43 n*h | {0} samples | {1}", trainingSamples,30 return string.Format("III.12.43 n*h | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 64 64 if (noiseRatio != null) { 65 65 var L_noise = new List<double>(); 66 var sigma_noise = (double) noiseRatio* L.StandardDeviationPop();66 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * L.StandardDeviationPop(); 67 67 L_noise.AddRange(L.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 68 68 data.Remove(L); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman93.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("III.13.18 2*E_n*d**2*k/h | {0} samples | {1}", trainingSamples,30 return string.Format("III.13.18 2*E_n*d**2*k/h | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 72 72 if (noiseRatio != null) { 73 73 var v_noise = new List<double>(); 74 var sigma_noise = (double) noiseRatio* v.StandardDeviationPop();74 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * v.StandardDeviationPop(); 75 75 v_noise.AddRange(v.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 76 76 data.Remove(v); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman94.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("III.14.14 I_0*(exp(q*Volt/(kb*T))-1) | {0} samples | {1}",31 trainingSamples,noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));30 return string.Format("III.14.14 I_0*(exp(q*Volt/(kb*T))-1) | {0}", 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } 33 33 } … … 74 74 if (noiseRatio != null) { 75 75 var I_noise = new List<double>(); 76 var sigma_noise = (double) noiseRatio* I.StandardDeviationPop();76 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * I.StandardDeviationPop(); 77 77 I_noise.AddRange(I.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 78 78 data.Remove(I); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman95.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("III.15.12 2*U*(1-cos(k*d)) | {0} samples | {1}", trainingSamples,30 return string.Format("III.15.12 2*U*(1-cos(k*d)) | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 70 70 if (noiseRatio != null) { 71 71 var E_n_noise = new List<double>(); 72 var sigma_noise = (double) noiseRatio* E_n.StandardDeviationPop();72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * E_n.StandardDeviationPop(); 73 73 E_n_noise.AddRange(E_n.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(E_n); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman96.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("III.15.14 h**2/(2*E_n*d**2) | {0} samples | {1}",31 trainingSamples,noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));30 return string.Format("III.15.14 h**2/(2*E_n*d**2) | {0}", 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } 33 33 } … … 70 70 if (noiseRatio != null) { 71 71 var m_noise = new List<double>(); 72 var sigma_noise = (double) noiseRatio* m.StandardDeviationPop();72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * m.StandardDeviationPop(); 73 73 m_noise.AddRange(m.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(m); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman97.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("III.15.27 2*pi*alpha/(n*d) | {0} samples | {1}", trainingSamples,30 return string.Format("III.15.27 2*pi*alpha/(n*d) | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 70 70 if (noiseRatio != null) { 71 71 var k_noise = new List<double>(); 72 var sigma_noise = (double) noiseRatio* k.StandardDeviationPop();72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * k.StandardDeviationPop(); 73 73 k_noise.AddRange(k.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(k); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman98.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("III.17.37 beta*(1+alpha*cos(theta)) | {0} samples | {1}", trainingSamples,30 return string.Format("III.17.37 beta*(1+alpha*cos(theta)) | {0}", 31 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } … … 70 70 if (noiseRatio != null) { 71 71 var f_noise = new List<double>(); 72 var sigma_noise = (double) noiseRatio* f.StandardDeviationPop();72 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * f.StandardDeviationPop(); 73 73 f_noise.AddRange(f.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 74 74 data.Remove(f); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman99.cs
r17678 r17805 29 29 get { 30 30 return string.Format( 31 "III.19.51 -m*q**4/(2*(4*pi*epsilon)**2*h**2)*(1/n**2) | {0} samples | {1}",32 trainingSamples,noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));31 "III.19.51 -m*q**4/(2*(4*pi*epsilon)**2*h**2)*(1/n**2) | {0}", 32 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 33 33 } 34 34 } … … 76 76 if (noiseRatio != null) { 77 77 var E_n_noise = new List<double>(); 78 var sigma_noise = (double) noiseRatio* E_n.StandardDeviationPop();78 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * E_n.StandardDeviationPop(); 79 79 E_n_noise.AddRange(E_n.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 80 80 data.Remove(E_n); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/FeynmanBonus1.cs
r17678 r17805 29 29 get { 30 30 return string.Format( 31 "Rutherford scattering: (Z_1*Z_2*alpha*hbar*c/(4*E_n*sin(theta/2)**2))**2 | {0} samples | {1}",32 trainingSamples,noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));31 "Rutherford scattering: (Z_1*Z_2*alpha*hbar*c/(4*E_n*sin(theta/2)**2))**2 | {0}", 32 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 33 33 } 34 34 } … … 82 82 if (noiseRatio != null) { 83 83 var A_noise = new List<double>(); 84 var sigma_noise = (double) noiseRatio* A.StandardDeviationPop();84 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * A.StandardDeviationPop(); 85 85 A_noise.AddRange(A.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 86 86 data.Remove(A); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/FeynmanBonus10.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("Goldstein 3.74: 2*pi*d**(3/2)/sqrt(G*(m1+m2)) | {0} samples | {1}",31 trainingSamples,noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));30 return string.Format("Goldstein 3.74: 2*pi*d**(3/2)/sqrt(G*(m1+m2)) | {0}", 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } 33 33 } … … 72 72 if (noiseRatio != null) { 73 73 var t_noise = new List<double>(); 74 var sigma_noise = (double) noiseRatio* t.StandardDeviationPop();74 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * t.StandardDeviationPop(); 75 75 t_noise.AddRange(t.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 76 76 data.Remove(t); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/FeynmanBonus11.cs
r17678 r17805 29 29 get { 30 30 return string.Format( 31 "Goldstein 3.99: sqrt(1+2*epsilon**2*E_n*L**2/(m*(Z_1*Z_2*q**2)**2)) | {0} samples | {1}",32 trainingSamples,noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));31 "Goldstein 3.99: sqrt(1+2*epsilon**2*E_n*L**2/(m*(Z_1*Z_2*q**2)**2)) | {0}", 32 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 33 33 } 34 34 } … … 84 84 if (noiseRatio != null) { 85 85 var alpha_noise = new List<double>(); 86 var sigma_noise = (double) noiseRatio* alpha.StandardDeviationPop();86 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * alpha.StandardDeviationPop(); 87 87 alpha_noise.AddRange(alpha.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 88 88 data.Remove(alpha); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/FeynmanBonus12.cs
r17678 r17805 29 29 get { 30 30 return string.Format( 31 "Goldstein 8.56: sqrt((p-q*A_vec)**2*c**2+m**2*c**4)+q*Volt | {0} samples | {1}",32 trainingSamples,noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));31 "Goldstein 8.56: sqrt((p-q*A_vec)**2*c**2+m**2*c**4)+q*Volt | {0}", 32 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 33 33 } 34 34 } … … 78 78 if (noiseRatio != null) { 79 79 var E_n_noise = new List<double>(); 80 var sigma_noise = (double) noiseRatio* E_n.StandardDeviationPop();80 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * E_n.StandardDeviationPop(); 81 81 E_n_noise.AddRange(E_n.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 82 82 data.Remove(E_n); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/FeynmanBonus13.cs
r17678 r17805 29 29 get { 30 30 return string.Format( 31 "Goldstein 12.80: 1/(2*m)*(p**2+m**2*omega**2*x**2*(1+alpha*x/y)) | {0} samples | {1}",32 trainingSamples,noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));31 "Goldstein 12.80: 1/(2*m)*(p**2+m**2*omega**2*x**2*(1+alpha*x/y)) | {0}", 32 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 33 33 } 34 34 } … … 79 79 if (noiseRatio != null) { 80 80 var E_n_noise = new List<double>(); 81 var sigma_noise = (double) noiseRatio* E_n.StandardDeviationPop();81 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * E_n.StandardDeviationPop(); 82 82 E_n_noise.AddRange(E_n.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 83 83 data.Remove(E_n); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/FeynmanBonus14.cs
r17678 r17805 29 29 get { 30 30 return string.Format( 31 "Jackson 2.11: q/(4*pi*epsilon*y**2)*(4*pi*epsilon*Volt*d-q*d*y**3/(y**2-d**2)**2) | {0} samples | {1}",32 trainingSamples,noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));31 "Jackson 2.11: q/(4*pi*epsilon*y**2)*(4*pi*epsilon*Volt*d-q*d*y**3/(y**2-d**2)**2) | {0}", 32 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 33 33 } 34 34 } … … 77 77 if (noiseRatio != null) { 78 78 var F_noise = new List<double>(); 79 var sigma_noise = (double) noiseRatio* F.StandardDeviationPop();79 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * F.StandardDeviationPop(); 80 80 F_noise.AddRange(F.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 81 81 data.Remove(F); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/FeynmanBonus15.cs
r17678 r17805 29 29 get { 30 30 return string.Format( 31 "Jackson 3.45: q/sqrt(r**2+d**2-2*r*d*cos(alpha)) | {0} samples | {1}",32 trainingSamples,noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));31 "Jackson 3.45: q/sqrt(r**2+d**2-2*r*d*cos(alpha)) | {0}", 32 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 33 33 } 34 34 } … … 74 74 if (noiseRatio != null) { 75 75 var Volt_noise = new List<double>(); 76 var sigma_noise = (double) noiseRatio* Volt.StandardDeviationPop();76 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * Volt.StandardDeviationPop(); 77 77 Volt_noise.AddRange(Volt.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 78 78 data.Remove(Volt); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/FeynmanBonus16.cs
r17678 r17805 29 29 get { 30 30 return string.Format( 31 "Jackson 4.60: Ef*cos(theta)*((alpha-1)/(alpha+2)*d**3/r**2-r) | {0} samples | {1}",32 trainingSamples,noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));31 "Jackson 4.60: Ef*cos(theta)*((alpha-1)/(alpha+2)*d**3/r**2-r) | {0}", 32 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 33 33 } 34 34 } … … 76 76 if (noiseRatio != null) { 77 77 var Volt_noise = new List<double>(); 78 var sigma_noise = (double) noiseRatio* Volt.StandardDeviationPop();78 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * Volt.StandardDeviationPop(); 79 79 Volt_noise.AddRange(Volt.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 80 80 data.Remove(Volt); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/FeynmanBonus17.cs
r17678 r17805 29 29 get { 30 30 return string.Format( 31 "Jackson 11.38: sqrt(1-v**2/c**2)*omega/(1+v/c*cos(theta)) | {0} samples | {1}",32 trainingSamples,noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));31 "Jackson 11.38: sqrt(1-v**2/c**2)*omega/(1+v/c*cos(theta)) | {0}", 32 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 33 33 } 34 34 } … … 74 74 if (noiseRatio != null) { 75 75 var omega_0_noise = new List<double>(); 76 var sigma_noise = (double) noiseRatio* omega_0.StandardDeviationPop();76 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * omega_0.StandardDeviationPop(); 77 77 omega_0_noise.AddRange(omega_0.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 78 78 data.Remove(omega_0); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/FeynmanBonus18.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("Weinberg 15.2.1: 3/(8*pi*G)*(c**2*k_f/r**2+H_G**2) | {0} samples | {1}",31 trainingSamples,noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));30 return string.Format("Weinberg 15.2.1: 3/(8*pi*G)*(c**2*k_f/r**2+H_G**2) | {0}", 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } 33 33 } … … 74 74 if (noiseRatio != null) { 75 75 var rho_0_noise = new List<double>(); 76 var sigma_noise = (double) noiseRatio* rho_0.StandardDeviationPop();76 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * rho_0.StandardDeviationPop(); 77 77 rho_0_noise.AddRange(rho_0.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 78 78 data.Remove(rho_0); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/FeynmanBonus19.cs
r17678 r17805 29 29 get { 30 30 return string.Format( 31 "Weinberg 15.2.2: -1/(8*pi*G)*(c**4*k_f/r**2 + c**2*H_G**2*(1-2*alpha)) | {0} samples | {1}",32 trainingSamples,noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));31 "Weinberg 15.2.2: -1/(8*pi*G)*(c**4*k_f/r**2 + c**2*H_G**2*(1-2*alpha)) | {0}", 32 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 33 33 } 34 34 } … … 78 78 if (noiseRatio != null) { 79 79 var pr_noise = new List<double>(); 80 var sigma_noise = (double) noiseRatio* pr.StandardDeviationPop();80 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * pr.StandardDeviationPop(); 81 81 pr_noise.AddRange(pr.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 82 82 data.Remove(pr); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/FeynmanBonus2.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("Friedman Equation: sqrt(8*pi*G*rho/3-alpha*c**2/d**2) | {0} samples | {1}",31 trainingSamples,noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));30 return string.Format("Friedman Equation: sqrt(8*pi*G*rho/3-alpha*c**2/d**2) | {0}", 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } 33 33 } … … 74 74 if (noiseRatio != null) { 75 75 var H_G_noise = new List<double>(); 76 var sigma_noise = (double) noiseRatio* H_G.StandardDeviationPop();76 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * H_G.StandardDeviationPop(); 77 77 H_G_noise.AddRange(H_G.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 78 78 data.Remove(H_G); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/FeynmanBonus20.cs
r17678 r17805 29 29 get { 30 30 return string.Format( 31 "Schwarz 13.132 (Klein-Nishina): pi*alpha**2*h**2/(m**2*c**2)*(omega_0/omega)**2*(omega_0/omega+omega/omega_0-sin(beta)**2) | {0} samples | {1}",32 trainingSamples,noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));31 "Schwarz 13.132 (Klein-Nishina): pi*alpha**2*h**2/(m**2*c**2)*(omega_0/omega)**2*(omega_0/omega+omega/omega_0-sin(beta)**2) | {0}", 32 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 33 33 } 34 34 } … … 83 83 if (noiseRatio != null) { 84 84 var A_noise = new List<double>(); 85 var sigma_noise = (double) noiseRatio* A.StandardDeviationPop();85 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * A.StandardDeviationPop(); 86 86 A_noise.AddRange(A.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 87 87 data.Remove(A); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/FeynmanBonus3.cs
r17678 r17805 29 29 get { 30 30 return string.Format( 31 "Compton Scattering: E_n/(1+E_n/(m*c**2)*(1-cos(theta))) | {0} samples | {1}", trainingSamples,31 "Compton Scattering: E_n/(1+E_n/(m*c**2)*(1-cos(theta))) | {0}", 32 32 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 33 33 } … … 73 73 if (noiseRatio != null) { 74 74 var K_noise = new List<double>(); 75 var sigma_noise = (double) noiseRatio* K.StandardDeviationPop();75 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * K.StandardDeviationPop(); 76 76 K_noise.AddRange(K.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 77 77 data.Remove(K); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/FeynmanBonus4.cs
r17678 r17805 29 29 get { 30 30 return string.Format( 31 "Radiated gravitational wave power: -32/5*G**4/c**5*(m1*m2)**2*(m1+m2)/r**5 | {0} samples | {1}",32 trainingSamples,noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));31 "Radiated gravitational wave power: -32/5*G**4/c**5*(m1*m2)**2*(m1+m2)/r**5 | {0}", 32 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 33 33 } 34 34 } … … 76 76 if (noiseRatio != null) { 77 77 var Pwr_noise = new List<double>(); 78 var sigma_noise = (double) noiseRatio* Pwr.StandardDeviationPop();78 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * Pwr.StandardDeviationPop(); 79 79 Pwr_noise.AddRange(Pwr.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 80 80 data.Remove(Pwr); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/FeynmanBonus5.cs
r17678 r17805 29 29 get { 30 30 return string.Format( 31 "Relativistic aberation: arccos((cos(theta2)-v/c)/(1-v/c*cos(theta2))) | {0} samples | {1}",32 trainingSamples,noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));31 "Relativistic aberation: arccos((cos(theta2)-v/c)/(1-v/c*cos(theta2))) | {0}", 32 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 33 33 } 34 34 } … … 71 71 if (noiseRatio != null) { 72 72 var theta1_noise = new List<double>(); 73 var sigma_noise = (double) noiseRatio* theta1.StandardDeviationPop();73 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * theta1.StandardDeviationPop(); 74 74 theta1_noise.AddRange(theta1.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 75 75 data.Remove(theta1); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/FeynmanBonus6.cs
r17678 r17805 29 29 get { 30 30 return string.Format( 31 "N-slit diffraction: I_0*(sin(alpha/2)*sin(n*delta/2)/(alpha/2*sin(delta/2)))**2 | {0} samples | {1}",32 trainingSamples,noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));31 "N-slit diffraction: I_0*(sin(alpha/2)*sin(n*delta/2)/(alpha/2*sin(delta/2)))**2 | {0}", 32 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 33 33 } 34 34 } … … 75 75 if (noiseRatio != null) { 76 76 var I_noise = new List<double>(); 77 var sigma_noise = (double) noiseRatio* I.StandardDeviationPop();77 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * I.StandardDeviationPop(); 78 78 I_noise.AddRange(I.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 79 79 data.Remove(I); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/FeynmanBonus7.cs
r17678 r17805 28 28 public override string Name { 29 29 get { 30 return string.Format("Goldstein 3.16: sqrt(2/m*(E_n-U-L**2/(2*m*r**2))) | {0} samples | {1}",31 trainingSamples,noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));30 return string.Format("Goldstein 3.16: sqrt(2/m*(E_n-U-L**2/(2*m*r**2))) | {0}", 31 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 32 32 } 33 33 } … … 74 74 if (noiseRatio != null) { 75 75 var v_noise = new List<double>(); 76 var sigma_noise = (double) noiseRatio* v.StandardDeviationPop();76 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * v.StandardDeviationPop(); 77 77 v_noise.AddRange(v.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 78 78 data.Remove(v); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/FeynmanBonus8.cs
r17678 r17805 29 29 get { 30 30 return string.Format( 31 "Goldstein 3.55: m*k_G/L**2*(1+sqrt(1+2*E_n*L**2/(m*k_G**2))*cos(theta1-theta2)) | {0} samples | {1}",32 trainingSamples,noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));31 "Goldstein 3.55: m*k_G/L**2*(1+sqrt(1+2*E_n*L**2/(m*k_G**2))*cos(theta1-theta2)) | {0}", 32 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 33 33 } 34 34 } … … 81 81 if (noiseRatio != null) { 82 82 var k_noise = new List<double>(); 83 var sigma_noise = (double) noiseRatio* k.StandardDeviationPop();83 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * k.StandardDeviationPop(); 84 84 k_noise.AddRange(k.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 85 85 data.Remove(k); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/FeynmanBonus9.cs
r17678 r17805 29 29 get { 30 30 return string.Format( 31 "Goldstein 3.64: d*(1-alpha**2)/(1+alpha*cos(theta1-theta2)) | {0} samples | {1}",32 trainingSamples,noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));31 "Goldstein 3.64: d*(1-alpha**2)/(1+alpha*cos(theta1-theta2)) | {0}", 32 noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio)); 33 33 } 34 34 } … … 73 73 if (noiseRatio != null) { 74 74 var r_noise = new List<double>(); 75 var sigma_noise = (double) noiseRatio* r.StandardDeviationPop();75 var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * r.StandardDeviationPop(); 76 76 r_noise.AddRange(r.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise))); 77 77 data.Remove(r); -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/FeynmanLargeInstanceProvider.cs
r17677 r17805 35 35 36 36 37 var noiseRatio = new double?[] { null, 1, 10E-2, 10E-4};37 var noiseRatio = new double?[] { null, 0.1, 0.3, 1 }; 38 38 39 39 #region types … … 163 163 164 164 165 foreach (var n in noiseRatio) {166 foreach (var type in descriptorTypes) {165 foreach (var type in descriptorTypes) { 166 foreach (var n in noiseRatio) { 167 167 descriptorList.Add((IDataDescriptor)Activator.CreateInstance(type, rand.Next(), 10000, 10000, n)); 168 168 } -
trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/FeynmanSmallInstanceProvider.cs
r17677 r17805 35 35 36 36 37 var noiseRatio = new double?[] { null, 1, 10E-2, 10E-4};37 var noiseRatio = new double?[] { null, 0.1, 0.3, 1 }; 38 38 39 39 #region types … … 163 163 164 164 165 foreach (var n in noiseRatio) {166 foreach (var type in descriptorTypes) {165 foreach (var type in descriptorTypes) { 166 foreach (var n in noiseRatio) { 167 167 descriptorList.Add((IDataDescriptor)Activator.CreateInstance(type, rand.Next(), 100, 100, n)); 168 168 }
Note: See TracChangeset
for help on using the changeset viewer.