Changeset 17674
- Timestamp:
- 07/17/20 16:51:22 (4 years ago)
- Location:
- branches/3075_aifeynman_instances/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman
- Files:
-
- 38 edited
Legend:
- Unmodified
- Added
- Removed
-
branches/3075_aifeynman_instances/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman1.cs
r17671 r17674 28 28 public override string Name { 29 29 get { 30 return string.Format("I.6.2 a exp(-theta**2/2)/sqrt(2*pi) | {0} samples | noise ({1})", trainingSamples,30 return string.Format("I.6.20a exp(-theta**2/2)/sqrt(2*pi) | {0} samples | noise ({1})", trainingSamples, 31 31 noiseRatio == null ? "no noise" : noiseRatio.ToString()); 32 32 } -
branches/3075_aifeynman_instances/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman10.cs
r17673 r17674 28 28 public override string Name { 29 29 get { 30 return string.Format("I.12.4 q1 *r/(4*pi*epsilon*r**3) | {0} samples | noise ({1})", trainingSamples,30 return string.Format("I.12.4 q1/(4*pi*epsilon*r**2) | {0} samples | noise ({1})", trainingSamples, 31 31 noiseRatio == null ? "no noise" : noiseRatio.ToString()); 32 32 } … … 64 64 65 65 for (var i = 0; i < q1.Count; i++) { 66 var res = q1[i] * r[i] / (4 * Math.PI * epsilon[i] * Math.Pow(r[i], 3));66 var res = q1[i] / (4 * Math.PI * epsilon[i] * Math.Pow(r[i], 2)); 67 67 Ef.Add(res); 68 68 } -
branches/3075_aifeynman_instances/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman12.cs
r17673 r17674 28 28 public override string Name { 29 29 get { 30 return string.Format("I.12.11 q*(Ef +B*v*sin(theta)) | {0} samples | noise ({1})", trainingSamples,30 return string.Format("I.12.11 q*(Ef + B*v*sin(theta)) | {0} samples | noise ({1})", trainingSamples, 31 31 noiseRatio == null ? "no noise" : noiseRatio.ToString()); 32 32 } -
branches/3075_aifeynman_instances/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman19.cs
r17671 r17674 28 28 public override string Name { 29 29 get { 30 return string.Format("I.15.1 m_0*v/sqrt(1-v**2/c**2) | {0} samples | noise ({1})", trainingSamples,30 return string.Format("I.15.10 m_0*v/sqrt(1-v**2/c**2) | {0} samples | noise ({1})", trainingSamples, 31 31 noiseRatio == null ? "no noise" : noiseRatio.ToString()); 32 32 } -
branches/3075_aifeynman_instances/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman2.cs
r17671 r17674 28 28 public override string Name { 29 29 get { 30 return string.Format("I.6.2 exp(-(theta/sigma)**2/2)/(sqrt(2*pi)*sigma) | {0} samples | noise ({1})",30 return string.Format("I.6.20 exp(-(theta/sigma)**2/2)/(sqrt(2*pi)*sigma) | {0} samples | noise ({1})", 31 31 trainingSamples, noiseRatio == null ? "no noise" : noiseRatio.ToString()); 32 32 } -
branches/3075_aifeynman_instances/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman21.cs
r17671 r17674 28 28 public override string Name { 29 29 get { 30 return string.Format("I.18.4 (m1*r1 +m2*r2)/(m1+m2) | {0} samples | noise ({1})", trainingSamples,30 return string.Format("I.18.4 (m1*r1 + m2*r2)/(m1 + m2) | {0} samples | noise ({1})", trainingSamples, 31 31 noiseRatio == null ? "no noise" : noiseRatio.ToString()); 32 32 } -
branches/3075_aifeynman_instances/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman23.cs
r17671 r17674 28 28 public override string Name { 29 29 get { 30 return string.Format("I.18.1 4m*r*v*sin(theta) | {0} samples | noise ({1})", trainingSamples,30 return string.Format("I.18.16 m*r*v*sin(theta) | {0} samples | noise ({1})", trainingSamples, 31 31 noiseRatio == null ? "no noise" : noiseRatio.ToString()); 32 32 } -
branches/3075_aifeynman_instances/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman24.cs
r17671 r17674 28 28 public override string Name { 29 29 get { 30 return string.Format("I.24.6 1/ 2*m*(omega**2+omega_0**2)*1/2*x**2 | {0} samples | noise ({1})",30 return string.Format("I.24.6 1/4*m*(omega**2 + omega_0**2)*x**2 | {0} samples | noise ({1})", 31 31 trainingSamples, noiseRatio == null ? "no noise" : noiseRatio.ToString()); 32 32 } … … 66 66 67 67 for (var i = 0; i < m.Count; i++) { 68 var res = 1.0 / 2 * m[i] * (Math.Pow(omega[i], 2) + Math.Pow(omega_0[i], 2)) * 1.0 / 2* Math.Pow(x[i], 2);68 var res = 1.0 / 4 * m[i] * (Math.Pow(omega[i], 2) + Math.Pow(omega_0[i], 2)) * Math.Pow(x[i], 2); 69 69 E_n.Add(res); 70 70 } -
branches/3075_aifeynman_instances/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman29.cs
r17671 r17674 28 28 public override string Name { 29 29 get { 30 return string.Format("I.29.16 sqrt(x1**2+x2**2 -2*x1*x2*cos(theta1-theta2)) | {0} samples | noise ({1})",30 return string.Format("I.29.16 sqrt(x1**2+x2**2 - 2*x1*x2*cos(theta1 - theta2)) | {0} samples | noise ({1})", 31 31 trainingSamples, noiseRatio == null ? "no noise" : noiseRatio.ToString()); 32 32 } -
branches/3075_aifeynman_instances/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman3.cs
r17671 r17674 29 29 get { 30 30 return string.Format( 31 "I.6.2 b exp(-((theta-theta1)/sigma)**2/2)/(sqrt(2*pi)*sigma) | {0} samples | noise ({1})",31 "I.6.20b exp(-((theta-theta1)/sigma)**2/2)/(sqrt(2*pi)*sigma) | {0} samples | noise ({1})", 32 32 trainingSamples, noiseRatio == null ? "no noise" : noiseRatio.ToString()); 33 33 } -
branches/3075_aifeynman_instances/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman35.cs
r17671 r17674 28 28 public override string Name { 29 29 get { 30 return string.Format("I.34.1 omega_0/(1-v/c) | {0} samples | noise ({1})", trainingSamples,30 return string.Format("I.34.10 omega_0/(1-v/c) | {0} samples | noise ({1})", trainingSamples, 31 31 noiseRatio == null ? "no noise" : noiseRatio.ToString()); 32 32 } -
branches/3075_aifeynman_instances/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman37.cs
r17671 r17674 28 28 public override string Name { 29 29 get { 30 return string.Format("I.34.27 (h/(2*pi))*omega | {0} samples | noise ({1})", trainingSamples,30 return string.Format("I.34.27 h*omega | {0} samples | noise ({1})", trainingSamples, 31 31 noiseRatio == null ? "no noise" : noiseRatio.ToString()); 32 32 } -
branches/3075_aifeynman_instances/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman38.cs
r17671 r17674 28 28 public override string Name { 29 29 get { 30 return string.Format("I.37.4 I1 +I2+2*sqrt(I1*I2)*cos(delta) | {0} samples | noise ({1})",30 return string.Format("I.37.4 I1 + I2 + 2*sqrt(I1*I2)*cos(delta) | {0} samples | noise ({1})", 31 31 trainingSamples, noiseRatio == null ? "no noise" : noiseRatio.ToString()); 32 32 } -
branches/3075_aifeynman_instances/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman39.cs
r17671 r17674 28 28 public override string Name { 29 29 get { 30 return string.Format("I.38.12 4*pi*epsilon* (h/(2*pi))**2/(m*q**2) | {0} samples | noise ({1})",30 return string.Format("I.38.12 4*pi*epsilon*h**2/(m*q**2) | {0} samples | noise ({1})", 31 31 trainingSamples, noiseRatio == null ? "no noise" : noiseRatio.ToString()); 32 32 } -
branches/3075_aifeynman_instances/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman40.cs
r17671 r17674 28 28 public override string Name { 29 29 get { 30 return string.Format("I.39.1 3/2*pr*V | {0} samples | noise ({1})", trainingSamples,30 return string.Format("I.39.10 3/2*pF*V | {0} samples | noise ({1})", trainingSamples, 31 31 noiseRatio == null ? "no noise" : noiseRatio.ToString()); 32 32 } … … 36 36 37 37 protected override string[] VariableNames { 38 get { return new[] {"p r", "V", noiseRatio == null ? "E_n" : "E_n_noise"}; }38 get { return new[] {"pF", "V", noiseRatio == null ? "E_n" : "E_n_noise"}; } 39 39 } 40 40 41 protected override string[] AllowedInputVariables { get { return new[] {"p r", "V"}; } }41 protected override string[] AllowedInputVariables { get { return new[] {"pF", "V"}; } } 42 42 43 43 public int Seed { get; private set; } … … 52 52 53 53 var data = new List<List<double>>(); 54 var p r= ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();54 var pF = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList(); 55 55 var V = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList(); 56 56 57 57 var E_n = new List<double>(); 58 58 59 data.Add(p r);59 data.Add(pF); 60 60 data.Add(V); 61 61 data.Add(E_n); 62 62 63 for (var i = 0; i < p r.Count; i++) {64 var res = 3.0 / 2 * p r[i] * V[i];63 for (var i = 0; i < pF.Count; i++) { 64 var res = 3.0 / 2 * pF[i] * V[i]; 65 65 E_n.Add(res); 66 66 } -
branches/3075_aifeynman_instances/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman41.cs
r17671 r17674 28 28 public override string Name { 29 29 get { 30 return string.Format("I.39.11 1/(gamma-1)*p r*V | {0} samples | noise ({1})", trainingSamples,30 return string.Format("I.39.11 1/(gamma-1)*pF*V | {0} samples | noise ({1})", trainingSamples, 31 31 noiseRatio == null ? "no noise" : noiseRatio.ToString()); 32 32 } … … 36 36 37 37 protected override string[] VariableNames { 38 get { return new[] {"gamma", "p r", "V", noiseRatio == null ? "E_n" : "E_n_noise"}; }38 get { return new[] {"gamma", "pF", "V", noiseRatio == null ? "E_n" : "E_n_noise"}; } 39 39 } 40 40 41 protected override string[] AllowedInputVariables { get { return new[] {"gamma", "p r", "V"}; } }41 protected override string[] AllowedInputVariables { get { return new[] {"gamma", "pF", "V"}; } } 42 42 43 43 public int Seed { get; private set; } … … 53 53 var data = new List<List<double>>(); 54 54 var gamma = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 2, 5).ToList(); 55 var p r= ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();55 var pF = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList(); 56 56 var V = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList(); 57 57 … … 59 59 60 60 data.Add(gamma); 61 data.Add(p r);61 data.Add(pF); 62 62 data.Add(V); 63 63 data.Add(E_n); 64 64 65 65 for (var i = 0; i < gamma.Count; i++) { 66 var res = 1.0 / (gamma[i] - 1) * p r[i] * V[i];66 var res = 1.0 / (gamma[i] - 1) * pF[i] * V[i]; 67 67 E_n.Add(res); 68 68 } -
branches/3075_aifeynman_instances/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman44.cs
r17671 r17674 29 29 get { 30 30 return string.Format( 31 "I.41.16 h*omega**3/(pi**2 *c**2*(exp((h/(2*pi))*omega/(kb*T))-1)) | {0} samples | noise ({1})",31 "I.41.16 h*omega**3/(pi**2 * c**2 * (exp(h*omega/(kb*T))-1)) | {0} samples | noise ({1})", 32 32 trainingSamples, noiseRatio == null ? "no noise" : noiseRatio.ToString()); 33 33 } -
branches/3075_aifeynman_instances/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman56.cs
r17671 r17674 28 28 public override string Name { 29 29 get { 30 return string.Format("II.6.15a p_d/(4*pi*epsilon)*3*z/r**5*sqrt(x**2+y**2) | {0} samples | noise ({1})",30 return string.Format("II.6.15a 3/(4*pi*epsilon)*p_d*z/r**5*sqrt(x**2+y**2) | {0} samples | noise ({1})", 31 31 trainingSamples, noiseRatio == null ? "no noise" : noiseRatio.ToString()); 32 32 } … … 70 70 71 71 for (var i = 0; i < epsilon.Count; i++) { 72 var res = p_d[i] / (4 * Math.PI * epsilon[i]) * 3* z[i] / Math.Pow(r[i], 5) *72 var res = 3.0 / (4 * Math.PI * epsilon[i]) * p_d[i] * z[i] / Math.Pow(r[i], 5) * 73 73 Math.Sqrt(Math.Pow(x[i], 2) + Math.Pow(y[i], 2)); 74 74 Ef.Add(res); -
branches/3075_aifeynman_instances/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman57.cs
r17671 r17674 29 29 get { 30 30 return string.Format( 31 "II.6.15b p_d/(4*pi*epsilon)*3*cos(theta)*sin(theta)/r**3| {0} samples | noise ({1})",31 "II.6.15b 3/(4*pi*epsilon)*p_d/r**3*cos(theta)*sin(theta) | {0} samples | noise ({1})", 32 32 trainingSamples, noiseRatio == null ? "no noise" : noiseRatio.ToString()); 33 33 } … … 67 67 68 68 for (var i = 0; i < epsilon.Count; i++) { 69 var res = p_d[i] / (4 * Math.PI * epsilon[i]) * 3 * Math.Cos(theta[i]) * Math.Sin(theta[i]) / Math.Pow(r[i], 3);69 var res = 3.0 / (4 * Math.PI * epsilon[i]) * p_d[i] / Math.Pow(r[i], 3) * Math.Cos(theta[i]) * Math.Sin(theta[i]); 70 70 Ef.Add(res); 71 71 } -
branches/3075_aifeynman_instances/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman62.cs
r17671 r17674 28 28 public override string Name { 29 29 get { 30 return string.Format("II.11.17 n_0*(1 +p_d*Ef*cos(theta)/(kb*T)) | {0} samples | noise ({1})",30 return string.Format("II.11.17 n_0*(1 + p_d*Ef*cos(theta)/(kb*T)) | {0} samples | noise ({1})", 31 31 trainingSamples, noiseRatio == null ? "no noise" : noiseRatio.ToString()); 32 32 } -
branches/3075_aifeynman_instances/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman79.cs
r17671 r17674 28 28 public override string Name { 29 29 get { 30 return string.Format("II.34.29b g_*mom*B*Jz/ (h/(2*pi))| {0} samples | noise ({1})", trainingSamples,30 return string.Format("II.34.29b g_*mom*B*Jz/h | {0} samples | noise ({1})", trainingSamples, 31 31 noiseRatio == null ? "no noise" : noiseRatio.ToString()); 32 32 } -
branches/3075_aifeynman_instances/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman82.cs
r17671 r17674 29 29 get { 30 30 return string.Format( 31 "II.36.38 mom* H/(kb*T)+(mom*alpha)/(epsilon*c**2*kb*T)*M| {0} samples | noise ({1})",31 "II.36.38 mom*B/(kb*T)+(mom*alpha*M)/(epsilon*c**2*kb*T) | {0} samples | noise ({1})", 32 32 trainingSamples, noiseRatio == null ? "no noise" : noiseRatio.ToString()); 33 33 } … … 37 37 38 38 protected override string[] VariableNames { 39 get { return new[] {"mom", " H", "kb", "T", "alpha", "epsilon", "c", "M", noiseRatio == null ? "f" : "f_noise"}; }39 get { return new[] {"mom", "B", "kb", "T", "alpha", "epsilon", "c", "M", noiseRatio == null ? "f" : "f_noise"}; } 40 40 } 41 41 42 42 protected override string[] AllowedInputVariables { 43 get { return new[] {"mom", " H", "kb", "T", "alpha", "epsilon", "c", "M"}; }43 get { return new[] {"mom", "B", "kb", "T", "alpha", "epsilon", "c", "M"}; } 44 44 } 45 45 … … 56 56 var data = new List<List<double>>(); 57 57 var mom = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList(); 58 var H= ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();58 var B = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList(); 59 59 var kb = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList(); 60 60 var T = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList(); … … 67 67 68 68 data.Add(mom); 69 data.Add( H);69 data.Add(B); 70 70 data.Add(kb); 71 71 data.Add(T); … … 77 77 78 78 for (var i = 0; i < mom.Count; i++) { 79 var res = mom[i] * H[i] / (kb[i] * T[i]) +80 mom[i] * alpha[i] / (epsilon[i] * Math.Pow(c[i], 2) * kb[i] * T[i]) * M[i];79 var res = mom[i] * B[i] / (kb[i] * T[i]) + 80 mom[i] * alpha[i] * M[i] / (epsilon[i] * Math.Pow(c[i], 2) * kb[i] * T[i]); 81 81 f.Add(res); 82 82 } -
branches/3075_aifeynman_instances/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman86.cs
r17671 r17674 28 28 public override string Name { 29 29 get { 30 return string.Format("III.4.32 1/(exp( (h/(2*pi))*omega/(kb*T))-1) | {0} samples | noise ({1})",30 return string.Format("III.4.32 1/(exp(h*omega/(kb*T))-1) | {0} samples | noise ({1})", 31 31 trainingSamples, noiseRatio == null ? "no noise" : noiseRatio.ToString()); 32 32 } -
branches/3075_aifeynman_instances/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman87.cs
r17671 r17674 29 29 get { 30 30 return string.Format( 31 "III.4.33 (h/(2*pi))*omega/(exp((h/(2*pi))*omega/(kb*T))-1) | {0} samples | noise ({1})",31 "III.4.33 h*omega/(exp(h*omega/(kb*T))-1) | {0} samples | noise ({1})", 32 32 trainingSamples, noiseRatio == null ? "no noise" : noiseRatio.ToString()); 33 33 } -
branches/3075_aifeynman_instances/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman88.cs
r17671 r17674 28 28 public override string Name { 29 29 get { 30 return string.Format("III.7.38 2*mom*B/ (h/(2*pi))| {0} samples | noise ({1})", trainingSamples,30 return string.Format("III.7.38 2*mom*B/h | {0} samples | noise ({1})", trainingSamples, 31 31 noiseRatio == null ? "no noise" : noiseRatio.ToString()); 32 32 } -
branches/3075_aifeynman_instances/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman89.cs
r17671 r17674 28 28 public override string Name { 29 29 get { 30 return string.Format("III.8.54 sin(E_n*t/ (h/(2*pi)))**2 | {0} samples | noise ({1})", trainingSamples,30 return string.Format("III.8.54 sin(E_n*t/h)**2 | {0} samples | noise ({1})", trainingSamples, 31 31 noiseRatio == null ? "no noise" : noiseRatio.ToString()); 32 32 } -
branches/3075_aifeynman_instances/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman9.cs
r17673 r17674 28 28 public override string Name { 29 29 get { 30 return string.Format("I.12.2 q1*q2 *r/(4*pi*epsilon*r**3) | {0} samples | noise ({1})", trainingSamples,30 return string.Format("I.12.2 q1*q2/(4*pi*epsilon*r**2) | {0} samples | noise ({1})", trainingSamples, 31 31 noiseRatio == null ? "no noise" : noiseRatio.ToString()); 32 32 } … … 66 66 67 67 for (var i = 0; i < q1.Count; i++) { 68 var res = q1[i] * q2[i] * r[i] / (4 * Math.PI * epsilon[i] * Math.Pow(r[i], 3));68 var res = q1[i] * q2[i] / (4 * Math.PI * epsilon[i] * Math.Pow(r[i], 2)); 69 69 F.Add(res); 70 70 } -
branches/3075_aifeynman_instances/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman90.cs
r17671 r17674 29 29 get { 30 30 return string.Format( 31 "III.9.52 (p_d*Ef*t/ (h)*sin((omega-omega_0)*t/2)**2/((omega-omega_0)*t/2)**2 | {0} samples | noise ({1})",31 "III.9.52 (p_d*Ef*t/h*sin((omega-omega_0)*t/2)**2/((omega-omega_0)*t/2)**2 | {0} samples | noise ({1})", 32 32 trainingSamples, noiseRatio == null ? "no noise" : noiseRatio.ToString()); 33 33 } -
branches/3075_aifeynman_instances/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman92.cs
r17671 r17674 28 28 public override string Name { 29 29 get { 30 return string.Format("III.12.43 n* (h/(2*pi))| {0} samples | noise ({1})", trainingSamples,30 return string.Format("III.12.43 n*h | {0} samples | noise ({1})", trainingSamples, 31 31 noiseRatio == null ? "no noise" : noiseRatio.ToString()); 32 32 } -
branches/3075_aifeynman_instances/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman93.cs
r17671 r17674 28 28 public override string Name { 29 29 get { 30 return string.Format("III.13.18 2*E_n*d**2*k/ (h/(2*pi))| {0} samples | noise ({1})", trainingSamples,30 return string.Format("III.13.18 2*E_n*d**2*k/h | {0} samples | noise ({1})", trainingSamples, 31 31 noiseRatio == null ? "no noise" : noiseRatio.ToString()); 32 32 } -
branches/3075_aifeynman_instances/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman96.cs
r17671 r17674 28 28 public override string Name { 29 29 get { 30 return string.Format("III.15.14 (h/(2*pi))**2/(2*E_n*d**2) | {0} samples | noise ({1})",30 return string.Format("III.15.14 h**2/(2*E_n*d**2) | {0} samples | noise ({1})", 31 31 trainingSamples, noiseRatio == null ? "no noise" : noiseRatio.ToString()); 32 32 } -
branches/3075_aifeynman_instances/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman99.cs
r17671 r17674 29 29 get { 30 30 return string.Format( 31 "III.19.51 -m*q**4/(2*(4*pi*epsilon)**2* (h/(2*pi))**2)*(1/n**2) | {0} samples | noise ({1})",31 "III.19.51 -m*q**4/(2*(4*pi*epsilon)**2*h**2)*(1/n**2) | {0} samples | noise ({1})", 32 32 trainingSamples, noiseRatio == null ? "no noise" : noiseRatio.ToString()); 33 33 } -
branches/3075_aifeynman_instances/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/FeynmanBonus1.cs
r17671 r17674 76 76 for (var i = 0; i < Z_1.Count; i++) { 77 77 var res = Math.Pow( 78 Z_1[i] * Z_2[i] * alpha[i] * hbar[i] * c[i] / Math.Pow(4 * E_n[i] * Math.Sin(theta[i] / 2), 2), 2);78 Z_1[i] * Z_2[i] * alpha[i] * hbar[i] * c[i] / (4 * E_n[i] * Math.Pow(Math.Sin(theta[i] / 2), 2)), 2); 79 79 A.Add(res); 80 80 } -
branches/3075_aifeynman_instances/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/FeynmanBonus10.cs
r17671 r17674 65 65 66 66 for (var i = 0; i < c.Count; i++) { 67 var res = Math. Cosh((Math.Cos(theta2[i]) - v[i] / c[i]) / (1 - v[i] / c[i] * Math.Cos(theta2[i])));67 var res = Math.Acos((Math.Cos(theta2[i]) - v[i] / c[i]) / (1 - v[i] / c[i] * Math.Cos(theta2[i]))); 68 68 theta1.Add(res); 69 69 } -
branches/3075_aifeynman_instances/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/FeynmanBonus13.cs
r17671 r17674 29 29 get { 30 30 return string.Format( 31 "Jackson 3.45: 1/(4*pi*epsilon)*q/sqrt(r**2+d**2-2*r*d*cos(alpha)) | {0} samples | noise ({1})",31 "Jackson 3.45: q/sqrt(r**2+d**2-2*r*d*cos(alpha)) | {0} samples | noise ({1})", 32 32 trainingSamples, noiseRatio == null ? "no noise" : noiseRatio.ToString()); 33 33 } … … 37 37 38 38 protected override string[] VariableNames { 39 get { return new[] {"q", "r", "d", "alpha", "epsilon",noiseRatio == null ? "Volt" : "Volt_noise"}; }39 get { return new[] {"q", "r", "d", "alpha", noiseRatio == null ? "Volt" : "Volt_noise"}; } 40 40 } 41 41 42 protected override string[] AllowedInputVariables { get { return new[] {"q", "r", "d", "alpha" , "epsilon"}; } }42 protected override string[] AllowedInputVariables { get { return new[] {"q", "r", "d", "alpha"}; } } 43 43 44 44 public int Seed { get; private set; } … … 57 57 var d = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 4, 6).ToList(); 58 58 var alpha = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 0, 6).ToList(); 59 var epsilon = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();60 59 61 60 var Volt = new List<double>(); … … 65 64 data.Add(d); 66 65 data.Add(alpha); 67 data.Add(epsilon);68 66 data.Add(Volt); 69 67 70 68 for (var i = 0; i < q.Count; i++) { 71 var res = 1.0 / (4 * Math.PI * epsilon[i]) *q[i] /69 var res = q[i] / 72 70 Math.Sqrt(Math.Pow(r[i], 2) + Math.Pow(d[i], 2) - 2 * r[i] * d[i] * Math.Cos(alpha[i])); 73 71 Volt.Add(res); -
branches/3075_aifeynman_instances/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/FeynmanBonus14.cs
r17671 r17674 29 29 get { 30 30 return string.Format( 31 "Jackson 4.60: Ef*cos(theta)*( -r+d**3/r**2*(alpha-1)/(alpha+2)) | {0} samples | noise ({1})",31 "Jackson 4.60: Ef*cos(theta)*((alpha-1)/(alpha+2)*d**3/r**2-r) | {0} samples | noise ({1})", 32 32 trainingSamples, noiseRatio == null ? "no noise" : noiseRatio.ToString()); 33 33 } … … 70 70 for (var i = 0; i < Ef.Count; i++) { 71 71 var res = Ef[i] * Math.Cos(theta[i]) * 72 ( -r[i] + Math.Pow(d[i], 3) / Math.Pow(r[i], 2) * (alpha[i] - 1) / (alpha[i] + 2));72 ((alpha[i] - 1) / (alpha[i] + 2) * Math.Pow(d[i], 3) / Math.Pow(r[i], 2) - r[i] ); 73 73 Volt.Add(res); 74 74 } -
branches/3075_aifeynman_instances/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/FeynmanBonus19.cs
r17671 r17674 29 29 get { 30 30 return string.Format( 31 "Weinberg 15.2.2: -1/(8*pi*G)*(c**4*k_f/r**2 +H_G**2*c**2*(1-2*alpha)) | {0} samples | noise ({1})",31 "Weinberg 15.2.2: -1/(8*pi*G)*(c**4*k_f/r**2 + c**2*H_G**2*(1-2*alpha)) | {0} samples | noise ({1})", 32 32 trainingSamples, noiseRatio == null ? "no noise" : noiseRatio.ToString()); 33 33 } … … 72 72 for (var i = 0; i < G.Count; i++) { 73 73 var res = -1.0 / (8 * Math.PI * G[i]) * (Math.Pow(c[i], 4) * k_f[i] / Math.Pow(r[i], 2) + 74 Math.Pow( H_G[i], 2) * Math.Pow(c[i], 2) * (1 - 2 * alpha[i]));74 Math.Pow(c[i], 2) * Math.Pow(H_G[i], 2) * (1 - 2 * alpha[i])); 75 75 pr.Add(res); 76 76 } -
branches/3075_aifeynman_instances/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/FeynmanBonus20.cs
r17671 r17674 29 29 get { 30 30 return string.Format( 31 "Schwarz 13.132 (Klein-Nishina): 1/(4*pi)*alpha**2*h**2/(m**2*c**2)*(omega_0/omega)**2*(omega_0/omega+omega/omega_0-sin(beta)**2) | {0} samples | noise ({1})",31 "Schwarz 13.132 (Klein-Nishina): pi*alpha**2*h**2/(m**2*c**2)*(omega_0/omega)**2*(omega_0/omega+omega/omega_0-sin(beta)**2) | {0} samples | noise ({1})", 32 32 trainingSamples, noiseRatio == null ? "no noise" : noiseRatio.ToString()); 33 33 } … … 75 75 76 76 for (var i = 0; i < omega.Count; i++) { 77 var res = 1.0 / (4 * Math.PI)* Math.Pow(alpha[i], 2) * Math.Pow(h[i], 2) /77 var res = Math.PI * Math.Pow(alpha[i], 2) * Math.Pow(h[i], 2) / 78 78 (Math.Pow(m[i], 2) * Math.Pow(c[i], 2)) * Math.Pow(omega_0[i] / omega[i], 2) * 79 79 (omega_0[i] / omega[i] + omega[i] / omega_0[i] - Math.Pow(Math.Sin(beta[i]), 2));
Note: See TracChangeset
for help on using the changeset viewer.