- Timestamp:
- 06/21/20 16:34:08 (4 years ago)
- Location:
- branches/2825-NSGA3/HeuristicLab.Algorithms.NSGA3/3.3
- Files:
-
- 2 edited
Legend:
- Unmodified
- Added
- Removed
-
branches/2825-NSGA3/HeuristicLab.Algorithms.NSGA3/3.3/NSGA3.cs
r17615 r17616 25 25 public class NSGA3 : BasicAlgorithm 26 26 { 27 public override bool SupportsPause => false; // todo: make true 27 private const double EPSILON = 10e-6; // a tiny number that is greater than 0 28 29 public override bool SupportsPause => false; 28 30 29 31 #region ProblemProperties … … 48 50 49 51 [Storable] 50 private Solution[] solutions; 52 private List<Solution> solutions; 53 54 [Storable] 55 private List<List<Solution>> fronts; 51 56 52 57 [Storable] … … 170 175 // todo: don't forget to clone storable fields 171 176 random = cloner.Clone(original.random); 172 solutions = original.solutions?.Select(cloner.Clone).ToArray();177 solutions = new List<Solution>(original.solutions?.Select(cloner.Clone)); 173 178 } 174 179 … … 192 197 protected override void Run(CancellationToken cancellationToken) 193 198 { 194 throw new NotImplementedException(); 199 referencePoints = new List<ReferencePoint>(); // todo: use existing list of reference points 200 for (int iteration = 0; iteration < MaximumGenerations.Value; iteration++) 201 ToNextGeneration(); 195 202 } 196 203 … … 207 214 private void InitSolutions() 208 215 { 209 int minBound = 0; // todo: find min inside Problem.Encoding210 int maxBound = 1; // todo: find max inside Problem.Encoding216 int minBound = 0; 217 int maxBound = 1; 211 218 212 219 // Initialise solutions 213 solutions = new Solution[PopulationSize.Value];220 solutions = new List<Solution>(PopulationSize.Value); 214 221 for (int i = 0; i < PopulationSize.Value; i++) 215 222 { 216 223 RealVector randomRealVector = new RealVector(Problem.Encoding.Length, random, minBound, maxBound); 217 224 218 solutions [i] =new Solution(StorableConstructorFlag.Default)225 solutions.Add(new Solution(StorableConstructorFlag.Default) 219 226 { 220 227 Chromosome = randomRealVector 221 } ;228 }); 222 229 solutions[i].Fitness = Evaluate(solutions[i].Chromosome); 223 230 } … … 260 267 } 261 268 269 private List<Solution> ToNextGeneration() 270 { 271 List<Solution> st = new List<Solution>(); 272 List<Solution> qt = Mutate(Recombine(solutions)); 273 List<Solution> rt = Utility.Concat(solutions, qt); 274 List<Solution> nextGeneration; 275 276 // Do non-dominated sort 277 var qualities = Utility.ToFitnessMatrix(solutions); 278 // compute the pareto fronts using the DominationCalculator and discard the qualities 279 // part in the inner tuples 280 fronts = DominationCalculator<Solution>.CalculateAllParetoFronts(rt.ToArray(), qualities, Problem.Maximization, out int[] rank, true) 281 .Select(list => new List<Solution>(list.Select(pair => pair.Item1))).ToList(); 282 283 int i = 0; 284 List<Solution> lf = null; // last front to be included 285 while (i < fronts.Count && st.Count < PopulationSize.Value) 286 { 287 lf = fronts[i]; 288 st = Utility.Concat(st, lf); 289 i++; 290 } 291 292 if (st.Count == PopulationSize.Value) // no selection needs to be done 293 nextGeneration = st; 294 else 295 { 296 int l = i - 1; 297 nextGeneration = new List<Solution>(); 298 for (int f = 0; f < l; f++) 299 nextGeneration = Utility.Concat(nextGeneration, fronts[f]); 300 Normalize(st); 301 Associate(); 302 throw new NotImplementedException(); 303 } 304 305 throw new NotImplementedException(); 306 } 307 308 private void Normalize(List<Solution> population) 309 { 310 // Find the ideal point 311 double[] idealPoint = new double[Problem.Encoding.Length]; 312 for (int j = 0; j < Problem.Encoding.Length; j++) 313 { 314 // Compute ideal point 315 idealPoint[j] = Utility.Min(s => s.Fitness[j], solutions); 316 317 // Translate objectives 318 foreach (var solution in solutions) 319 solution.Fitness[j] -= idealPoint[j]; 320 } 321 322 // Find the extreme points 323 Solution[] extremePoints = new Solution[Problem.Encoding.Length]; 324 for (int j = 0; j < Problem.Encoding.Length; j++) 325 { 326 // Compute extreme points 327 double[] weights = new double[Problem.Encoding.Length]; 328 for (int i = 0; i < Problem.Encoding.Length; i++) weights[i] = EPSILON; 329 weights[j] = 1; 330 Func<Solution, double> func = s => ASF(s.Fitness, weights); 331 extremePoints[j] = Utility.ArgMin(func, solutions); 332 } 333 334 // Compute intercepts 335 List<double> intercepts = GetIntercepts(extremePoints.ToList()); 336 337 // Normalize objectives 338 NormalizeObjectives(intercepts, idealPoint); 339 340 // Associate reference points to solutions 341 Associate(); 342 } 343 344 private void NormalizeObjectives(List<double> intercepts, double[] idealPoint) 345 { 346 for (int f = 0; f < fronts.Count; f++) 347 { 348 foreach (var solution in fronts[f]) 349 { 350 for (int i = 0; i < Problem.Encoding.Length; i++) 351 { 352 if (Math.Abs(intercepts[i] - idealPoint[i]) > EPSILON) 353 { 354 solution.Fitness[i] = solution.Fitness[i] / (intercepts[i] - idealPoint[i]); 355 } 356 else 357 { 358 solution.Fitness[i] = solution.Fitness[i] / EPSILON; 359 } 360 } 361 } 362 } 363 } 364 365 private void Associate() 366 { 367 for (int f = 0; f < fronts.Count; f++) 368 { 369 foreach (var solution in fronts[f]) 370 { 371 // find reference point for which the perpendicular distance to the current 372 // solution is the lowest 373 var rpAndDist = Utility.MinArgMin(rp => GetPerpendicularDistance(rp.Values, solution.Fitness), referencePoints); 374 375 //// todo: use ArgMin here 376 //int min_rp = -1; 377 //double min_dist = double.MaxValue; 378 //for (int r = 0; r < referencePoints.Count; r++) 379 //{ 380 // double d = GetPerpendicularDistance(referencePoints[r].Values, solution.Fitness); 381 // if (d < min_dist) 382 // { 383 // min_dist = d; 384 // min_rp = r; 385 // } 386 //} 387 if (f + 1 != fronts.Count) 388 { 389 // Todo: Add member for reference point on index min_rp 390 throw new NotImplementedException(); 391 } 392 else 393 { 394 // Todo: Add potential member for reference point on index min_rp 395 throw new NotImplementedException(); 396 } 397 } 398 } 399 } 400 401 private double GetPerpendicularDistance(double[] values, double[] fitness) 402 { 403 double numerator = 0; 404 double denominator = 0; 405 for (int i = 0; i < values.Length; i++) 406 { 407 numerator += values[i] * fitness[i]; 408 denominator += Math.Pow(values[i], 2); 409 } 410 double k = numerator / denominator; 411 412 double d = 0; 413 for (int i = 0; i < values.Length; i++) 414 { 415 d += Math.Pow(k * values[i] - fitness[i], 2); 416 } 417 return Math.Sqrt(d); 418 } 419 420 private double ASF(double[] x, double[] weight) 421 { 422 List<int> dimensions = new List<int>(); 423 for (int i = 0; i < Problem.Encoding.Length; i++) dimensions.Add(i); 424 Func<int, double> f = dim => x[dim] / weight[dim]; 425 return Utility.Max(f, dimensions); 426 } 427 428 private List<double> GetIntercepts(List<Solution> extremePoints) 429 { 430 // Check whether there are duplicate extreme points. This might happen but the original 431 // paper does not mention how to deal with it. 432 bool duplicate = false; 433 for (int i = 0; !duplicate && i < extremePoints.Count; i++) 434 { 435 for (int j = i + 1; !duplicate && j < extremePoints.Count; j++) 436 { 437 // maybe todo: override Equals method of solution? 438 duplicate = extremePoints[i].Equals(extremePoints[j]); 439 } 440 } 441 442 List<double> intercepts = new List<double>(); 443 444 if (duplicate) 445 { // cannot construct the unique hyperplane (this is a casual method to deal with the condition) 446 for (int f = 0; f < Problem.Encoding.Length; f++) 447 { 448 // extreme_points[f] stands for the individual with the largest value of 449 // objective f 450 intercepts.Add(extremePoints[f].Fitness[f]); 451 } 452 } 453 else 454 { 455 // Find the equation of the hyperplane 456 List<double> b = new List<double>(); //(pop[0].objs().size(), 1.0); 457 for (int i = 0; i < Problem.Encoding.Length; i++) 458 { 459 b.Add(1.0); 460 } 461 462 List<List<double>> a = new List<List<double>>(); 463 foreach (Solution s in extremePoints) 464 { 465 List<double> aux = new List<double>(); 466 for (int i = 0; i < Problem.Encoding.Length; i++) 467 aux.Add(s.Fitness[i]); 468 a.Add(aux); 469 } 470 List<double> x = GaussianElimination(a, b); 471 472 // Find intercepts 473 for (int f = 0; f < Problem.Encoding.Length; f++) 474 { 475 intercepts.Add(1.0 / x[f]); 476 } 477 } 478 479 return intercepts; 480 } 481 482 private List<double> GaussianElimination(List<List<double>> a, List<double> b) 483 { 484 List<double> x = new List<double>(); 485 486 int n = a.Count; 487 for (int i = 0; i < n; i++) 488 a[i].Add(b[i]); 489 490 for (int @base = 0; @base < n - 1; @base++) 491 for (int target = @base + 1; target < n; target++) 492 { 493 double ratio = a[target][@base] / a[@base][@base]; 494 for (int term = 0; term < a[@base].Count; term++) 495 a[target][term] = a[target][term] - a[@base][term] * ratio; 496 } 497 498 for (int i = 0; i < n; i++) 499 x.Add(0.0); 500 501 for (int i = n - 1; i >= 0; i--) 502 { 503 for (int known = i + 1; known < n; known++) 504 a[i][n] = a[i][n] - a[i][known] * x[known]; 505 x[i] = a[i][n] / a[i][i]; 506 } 507 508 return x; 509 } 510 511 private List<Solution> Recombine(List<Solution> solutions) 512 { 513 throw new NotImplementedException(); 514 } 515 516 private List<Solution> Mutate(List<Solution> solutions) 517 { 518 throw new NotImplementedException(); 519 } 520 262 521 #endregion Private Methods 263 522 } -
branches/2825-NSGA3/HeuristicLab.Algorithms.NSGA3/3.3/Utility.cs
r17559 r17616 8 8 internal static class Utility 9 9 { 10 internal static List<T> Concat<T>(List<T> list1, List<T> list2) 11 { 12 List<T> resultList = new List<T>(list1.Count + list2.Count); 13 14 resultList.AddRange(list1); 15 resultList.AddRange(list2); 16 17 return resultList; 18 } 19 10 20 /// <summary> 11 21 /// Returns the number of possible combinations of size <paramref name="r" /> from a set of … … 42 52 } 43 53 44 internal static double[,] ToArray(List<ReferencePoint> referencePoints) 54 internal static double[][] ToFitnessMatrix(this List<Solution> solutions) 55 { 56 double[][] data = new double[solutions.Count][]; 57 for (int i = 0; i < solutions.Count; i++) 58 { 59 Solution solution = solutions[i]; 60 data[i] = new double[solution.Fitness.Length]; 61 for (int j = 0; j < solution.Fitness.Length; j++) 62 { 63 data[i][j] = solution.Fitness[j]; 64 } 65 } 66 67 return data; 68 } 69 70 internal static DoubleMatrix ToMatrix(this IEnumerable<IReadOnlyList<double>> data) 71 { 72 var d2 = data.ToArray(); 73 var mat = new DoubleMatrix(d2.Length, d2[0].Count); 74 for (var i = 0; i < mat.Rows; i++) 75 for (var j = 0; j < mat.Columns; j++) 76 mat[i, j] = d2[i][j]; 77 return mat; 78 } 79 80 private static double[,] ToArray(List<ReferencePoint> referencePoints) 45 81 { 46 82 if (referencePoints == null || !referencePoints.Any()) throw new ArgumentException($"{nameof(referencePoints)} is null or empty"); … … 56 92 } 57 93 58 internal static DoubleMatrix ToMatrix(this IEnumerable<IReadOnlyList<double>> data)94 internal static TOut Min<TIn, TOut>(Func<TIn, TOut> func, IEnumerable<TIn> inputs) where TOut : IComparable 59 95 { 60 var d2 = data.ToArray(); 61 var mat = new DoubleMatrix(d2.Length, d2[0].Count); 62 for (var i = 0; i < mat.Rows; i++) 63 for (var j = 0; j < mat.Columns; j++) 64 mat[i, j] = d2[i][j]; 65 return mat; 96 //var it = inputs.GetEnumerator(); 97 //it.MoveNext(); 98 //var minValue = func(it.Current); 99 //while (it.MoveNext()) 100 //{ 101 // var currentValue = func(it.Current); 102 // if (minValue.CompareTo(currentValue) > 0) minValue = currentValue; 103 //} 104 105 //return minValue; 106 return MinArgMin(func, inputs).Item2; 107 } 108 109 internal static TIn ArgMin<TIn, TOut>(Func<TIn, TOut> func, IEnumerable<TIn> inputs) where TOut : IComparable 110 { 111 return MinArgMin(func, inputs).Item1; 112 } 113 114 internal static Tuple<TIn, TOut> MinArgMin<TIn, TOut>(Func<TIn, TOut> func, IEnumerable<TIn> inputs) where TOut : IComparable 115 { 116 var it = inputs.GetEnumerator(); 117 it.MoveNext(); 118 var minArg = it.Current; 119 var minValue = func(it.Current); 120 while (it.MoveNext()) 121 { 122 var currentArg = it.Current; 123 var currentValue = func(it.Current); 124 if (minValue.CompareTo(currentValue) > 0) 125 { 126 minArg = currentArg; 127 minValue = currentValue; 128 } 129 } 130 131 return Tuple.Create(minArg, minValue); 132 } 133 134 internal static TOut Max<TIn, TOut>(Func<TIn, TOut> func, IEnumerable<TIn> inputs) where TOut : IComparable 135 { 136 //var it = inputs.GetEnumerator(); 137 //it.MoveNext(); 138 //var maxValue = func(it.Current); 139 //while (it.MoveNext()) 140 //{ 141 // var currentValue = func(it.Current); 142 // if (maxValue.CompareTo(currentValue) < 0) maxValue = currentValue; 143 //} 144 145 //return maxValue; 146 return MaxArgMax(func, inputs).Item2; 147 } 148 149 internal static TIn ArgMax<TIn, TOut>(Func<TIn, TOut> func, IEnumerable<TIn> inputs) where TOut : IComparable 150 { 151 return MaxArgMax(func, inputs).Item1; 152 } 153 154 internal static Tuple<TIn, TOut> MaxArgMax<TIn, TOut>(Func<TIn, TOut> func, IEnumerable<TIn> inputs) where TOut : IComparable 155 { 156 var it = inputs.GetEnumerator(); 157 it.MoveNext(); 158 var maxArg = it.Current; 159 var maxValue = func(it.Current); 160 while (it.MoveNext()) 161 { 162 var currentArg = it.Current; 163 var currentValue = func(it.Current); 164 if (maxValue.CompareTo(currentValue) < 0) 165 { 166 maxArg = currentArg; 167 maxValue = currentValue; 168 } 169 } 170 171 return Tuple.Create(maxArg, maxValue); 66 172 } 67 173 }
Note: See TracChangeset
for help on using the changeset viewer.