- Timestamp:
- 05/25/20 14:52:32 (5 years ago)
- Location:
- branches/3040_VectorBasedGP/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4
- Files:
-
- 5 edited
- 8 copied
Legend:
- Unmodified
- Added
- Removed
-
branches/3040_VectorBasedGP/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Converters/TreeToTensorConverter.cs
r17502 r17554 158 158 if (node.Symbol is Exponential) { 159 159 return math_ops.pow( 160 Math.E,160 (float)Math.E, 161 161 ConvertNode(node.GetSubtree(0))); 162 162 } -
branches/3040_VectorBasedGP/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Grammars/TypeCoherentVectorExpressionGrammar.cs
r17466 r17554 38 38 private const string TerminalsName = "Terminals"; 39 39 private const string VectorAggregationName = "Aggregations"; 40 private const string VectorStatisticsName = "Vector Statistics"; 41 private const string VectorDistancesName = "Vector Distances"; 40 42 private const string ScalarSymbolsName = "Scalar Symbols"; 41 43 … … 89 91 var sd = new StandardDeviation(); 90 92 var sum = new Sum(); 93 var length = new Length() { Enabled = false }; 94 var min = new Min() { Enabled = false }; 95 var max = new Max() { Enabled = false }; 96 var variance = new Variance() { Enabled = false }; 97 var skewness = new Skewness() { Enabled = false }; 98 var kurtosis = new Kurtosis() { Enabled = false }; 99 var euclideanDistance = new EuclideanDistance() { Enabled = false }; 100 var covariance = new Covariance() { Enabled = false }; 91 101 #endregion 92 102 … … 120 130 var powerSymbols = new GroupSymbol(PowerFunctionsName, new List<ISymbol> { square, sqrt, cube, cubeRoot, power, root }); 121 131 var terminalSymbols = new GroupSymbol(TerminalsName, new List<ISymbol> { constant, variable, binFactorVariable, factorVariable }); 122 var aggregationSymbols = new GroupSymbol(VectorAggregationName, new List<ISymbol> { mean, sd, sum }); 132 var statisticsSymbols = new GroupSymbol(VectorStatisticsName, new List<ISymbol> {mean, sd, sum, length, min, max, variance, skewness, kurtosis}); 133 var distancesSymbols = new GroupSymbol(VectorDistancesName, new List<ISymbol> { euclideanDistance, covariance }); 134 var aggregationSymbols = new GroupSymbol(VectorAggregationName, new List<ISymbol> { statisticsSymbols, distancesSymbols }); 123 135 var scalarSymbols = new GroupSymbol(ScalarSymbolsName, new List<ISymbol>() { arithmeticSymbols, trigonometricSymbols, exponentialAndLogarithmicSymbols, powerSymbols, terminalSymbols, aggregationSymbols }); 124 136 … … 151 163 SetSubtreeCount(exponentialAndLogarithmicSymbols, 1, 1); 152 164 SetSubtreeCount(terminalSymbols, 0, 0); 153 SetSubtreeCount(aggregationSymbols, 1, 1); 165 SetSubtreeCount(statisticsSymbols, 1, 1); 166 SetSubtreeCount(distancesSymbols, 2, 2); 154 167 155 168 SetSubtreeCount(vectorarithmeticSymbols, 2, 2); -
branches/3040_VectorBasedGP/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/HeuristicLab.Problems.DataAnalysis.Symbolic-3.4.csproj
r17475 r17554 47 47 <CodeAnalysisRuleSet>AllRules.ruleset</CodeAnalysisRuleSet> 48 48 <Prefer32Bit>false</Prefer32Bit> 49 <LangVersion>latest</LangVersion> 49 50 </PropertyGroup> 50 51 <PropertyGroup Condition=" '$(Configuration)|$(Platform)' == 'Release|AnyCPU' "> … … 57 58 <CodeAnalysisRuleSet>AllRules.ruleset</CodeAnalysisRuleSet> 58 59 <Prefer32Bit>false</Prefer32Bit> 60 <LangVersion>latest</LangVersion> 59 61 </PropertyGroup> 60 62 <PropertyGroup Condition=" '$(Configuration)|$(Platform)' == 'Debug|x64' "> … … 67 69 <CodeAnalysisRuleSet>AllRules.ruleset</CodeAnalysisRuleSet> 68 70 <Prefer32Bit>false</Prefer32Bit> 71 <LangVersion>latest</LangVersion> 69 72 </PropertyGroup> 70 73 <PropertyGroup Condition=" '$(Configuration)|$(Platform)' == 'Release|x64' "> … … 77 80 <CodeAnalysisRuleSet>AllRules.ruleset</CodeAnalysisRuleSet> 78 81 <Prefer32Bit>false</Prefer32Bit> 82 <LangVersion>latest</LangVersion> 79 83 </PropertyGroup> 80 84 <PropertyGroup Condition=" '$(Configuration)|$(Platform)' == 'Debug|x86' "> … … 87 91 <CodeAnalysisRuleSet>AllRules.ruleset</CodeAnalysisRuleSet> 88 92 <Prefer32Bit>false</Prefer32Bit> 93 <LangVersion>latest</LangVersion> 89 94 </PropertyGroup> 90 95 <PropertyGroup Condition=" '$(Configuration)|$(Platform)' == 'Release|x86' "> … … 97 102 <CodeAnalysisRuleSet>AllRules.ruleset</CodeAnalysisRuleSet> 98 103 <Prefer32Bit>false</Prefer32Bit> 104 <LangVersion>latest</LangVersion> 99 105 </PropertyGroup> 100 106 <ItemGroup> … … 233 239 <Compile Include="SymbolicDataAnalysisSolutionImpactValuesCalculator.cs" /> 234 240 <Compile Include="Symbols\Addition.cs" /> 241 <Compile Include="Symbols\Covariance.cs" /> 242 <Compile Include="Symbols\EuclideanDistance.cs" /> 235 243 <Compile Include="Symbols\AnalyticQuotient.cs" /> 236 244 <Compile Include="Symbols\And.cs" /> 237 245 <Compile Include="Symbols\AutoregressiveVariable.cs" /> 246 <Compile Include="Symbols\Length.cs" /> 247 <Compile Include="Symbols\Max.cs" /> 248 <Compile Include="Symbols\Min.cs" /> 238 249 <Compile Include="Symbols\Mean.cs" /> 250 <Compile Include="Symbols\Kurtosis.cs" /> 251 <Compile Include="Symbols\Skewness.cs" /> 252 <Compile Include="Symbols\Variance.cs" /> 239 253 <Compile Include="Symbols\StandardDeviation.cs" /> 240 254 <Compile Include="Symbols\Sum.cs" /> -
branches/3040_VectorBasedGP/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Interpreter/OpCodes.cs
r17466 r17554 80 80 Mean = 53, 81 81 StandardDeviation = 54, 82 Sum = 55 82 Sum = 55, 83 Length = 56, 84 Min = 57, 85 Max = 58, 86 Variance = 59, 87 Skewness = 60, 88 Kurtosis = 61, 89 EuclideanDistance = 62 , 90 Covariance = 63, 91 83 92 } 84 93 public static class OpCodes { … … 139 148 public const byte StandardDeviation = (byte)OpCode.StandardDeviation; 140 149 public const byte Sum = (byte)OpCode.Sum; 150 public const byte Length = (byte)OpCode.Length; 151 public const byte Min = (byte)OpCode.Min; 152 public const byte Max = (byte)OpCode.Max; 153 public const byte Variance = (byte)OpCode.Variance; 154 public const byte Skewness = (byte)OpCode.Skewness; 155 public const byte Kurtosis = (byte)OpCode.Kurtosis; 156 public const byte EuclideanDistance = (byte)OpCode.EuclideanDistance; 157 public const byte Covariance = (byte)OpCode.Covariance; 141 158 142 159 … … 197 214 { typeof(Mean), OpCodes.Mean }, 198 215 { typeof(StandardDeviation), OpCodes.StandardDeviation }, 199 { typeof(Sum), OpCodes.Sum } 200 216 { typeof(Sum), OpCodes.Sum }, 217 { typeof(Length), OpCodes.Length }, 218 { typeof(Min), OpCodes.Min }, 219 { typeof(Max), OpCodes.Max }, 220 { typeof(Variance), OpCodes.Variance }, 221 { typeof(Skewness), OpCodes.Skewness }, 222 { typeof(Kurtosis), OpCodes.Kurtosis }, 223 { typeof(EuclideanDistance), OpCodes.EuclideanDistance }, 224 { typeof(Covariance), OpCodes.Covariance }, 201 225 }; 202 226 -
branches/3040_VectorBasedGP/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Interpreter/SymbolicDataAnalysisExpressionTreeVectorInterpreter.cs
r17467 r17554 221 221 return EvaluationResult.NaN; 222 222 } 223 private static EvaluationResult AggregateMultipleApply(EvaluationResult lhs, EvaluationResult rhs, 224 Func<double, double, double> ssFunc = null, 225 Func<double, DoubleVector, double> svFunc = null, 226 Func<DoubleVector, double, double> vsFunc = null, 227 Func<DoubleVector, DoubleVector, double> vvFunc = null) { 228 if (lhs.IsScalar && rhs.IsScalar && ssFunc != null) return new EvaluationResult(ssFunc(lhs.Scalar, rhs.Scalar)); 229 if (lhs.IsScalar && rhs.IsVector && svFunc != null) return new EvaluationResult(svFunc(lhs.Scalar, rhs.Vector)); 230 if (lhs.IsVector && rhs.IsScalar && vsFunc != null) return new EvaluationResult(vsFunc(lhs.Vector, rhs.Scalar)); 231 if (lhs.IsVector && rhs.IsVector && vvFunc != null) return new EvaluationResult(vvFunc(lhs.Vector, rhs.Vector)); 232 return EvaluationResult.NaN; 233 } 223 234 224 235 public virtual EvaluationResult Evaluate(IDataset dataset, ref int row, InterpreterState state) { … … 365 376 v => v.Count > 1 ? Statistics.StandardDeviation(v) : 0); 366 377 } 378 case OpCodes.Length: { 379 var cur = Evaluate(dataset, ref row, state); 380 return AggregateApply(cur, 381 s => 0, 382 v => v.Count > 1 ? v.Count : 0); 383 } 384 case OpCodes.Min: { 385 var cur = Evaluate(dataset, ref row, state); 386 return AggregateApply(cur, 387 s => 0, 388 v => v.Count > 1 ? Statistics.Minimum(v) : 0); 389 } 390 case OpCodes.Max: { 391 var cur = Evaluate(dataset, ref row, state); 392 return AggregateApply(cur, 393 s => 0, 394 v => v.Count > 1 ? Statistics.Maximum(v) : 0); 395 } 396 case OpCodes.Variance: { 397 var cur = Evaluate(dataset, ref row, state); 398 return AggregateApply(cur, 399 s => 0, 400 v => v.Count > 1 ? Statistics.Variance(v) : 0); 401 } 402 case OpCodes.Skewness: { 403 var cur = Evaluate(dataset, ref row, state); 404 return AggregateApply(cur, 405 s => 0, 406 v => v.Count > 1 ? Statistics.Skewness(v) : 0); 407 } 408 case OpCodes.Kurtosis: { 409 var cur = Evaluate(dataset, ref row, state); 410 return AggregateApply(cur, 411 s => 0, 412 v => v.Count > 1 ? Statistics.Kurtosis(v) : 0); 413 } 414 case OpCodes.EuclideanDistance: { 415 var x1 = Evaluate(dataset, ref row, state); 416 var x2 = Evaluate(dataset, ref row, state); 417 return AggregateMultipleApply(x1, x2, 418 //(s1, s2) => s1 - s2, 419 //(s1, v2) => Math.Sqrt((s1 - v2).PointwisePower(2).Sum()), 420 //(v1, s2) => Math.Sqrt((v1 - s2).PointwisePower(2).Sum()), 421 vvFunc: (v1, v2) => Math.Sqrt((v1 - v2).PointwisePower(2).Sum()) 422 ); 423 } 424 case OpCodes.Covariance: { 425 var x1 = Evaluate(dataset, ref row, state); 426 var x2 = Evaluate(dataset, ref row, state); 427 return AggregateMultipleApply(x1, x2, 428 //(s1, s2) => 0, 429 //(s1, v2) => 0, 430 //(v1, s2) => 0, 431 vvFunc: (v1, v2) => v1.Count > 1 && v2.Count > 1 ? Statistics.Covariance(v1, v2) : double.NaN 432 ); 433 } 367 434 case OpCodes.Variable: { 368 435 if (row < 0 || row >= dataset.Rows) return EvaluationResult.NaN; -
branches/3040_VectorBasedGP/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Symbols/Covariance.cs
r17551 r17554 25 25 using HEAL.Attic; 26 26 namespace HeuristicLab.Problems.DataAnalysis.Symbolic { 27 [StorableType("1BFD8CB7-7377-4130-9903-1E9A76349285")] 28 [Item("Analytic Quotient", "The analytic quotient function aq(a,b) = a / sqrt(b²+1) can be used as an " + 29 "alternative to protected division. See H. Drieberg and P. Rocket, The Use of an Analytic Quotient Operator" + 30 " in Genetic Programming. IEEE Transactions on Evolutionary Computation, Vol. 17, No. 1, February 2013, pp. 146 -- 152")] 31 public sealed class AnalyticQuotient : Symbol { 27 [StorableType("8B554834-78C9-4F2D-BD9F-902A77B598AB")] 28 [Item("Covariance", "Symbol that represents the covariance function.")] 29 public sealed class Covariance : Symbol { 32 30 private const int minimumArity = 2; 33 31 private const int maximumArity = 2; … … 41 39 42 40 [StorableConstructor] 43 private AnalyticQuotient(StorableConstructorFlag _) : base(_) { }44 private AnalyticQuotient(AnalyticQuotientoriginal, Cloner cloner) : base(original, cloner) { }41 private Covariance(StorableConstructorFlag _) : base(_) { } 42 private Covariance(Covariance original, Cloner cloner) : base(original, cloner) { } 45 43 public override IDeepCloneable Clone(Cloner cloner) { 46 return new AnalyticQuotient(this, cloner);44 return new Covariance(this, cloner); 47 45 } 48 public AnalyticQuotient() : base("AnalyticQuotient", "The analytic quotient function aq(a,b) = a / sqrt(b²+1) can be used as an " + 49 "alternative to protected division. See H. Drieberg and P. Rocket, The Use of an Analytic Quotient Operator" + 50 " in Genetic Programming. IEEE Transactions on Evolutionary Computation, Vol. 17, No. 1, February 2013, pp. 146 -- 152") { } 46 public Covariance() : base("Covariance", "Symbol that represents the covariance function.") { } 51 47 } 52 48 } -
branches/3040_VectorBasedGP/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Symbols/EuclideanDistance.cs
r17551 r17554 25 25 using HEAL.Attic; 26 26 namespace HeuristicLab.Problems.DataAnalysis.Symbolic { 27 [StorableType("1BFD8CB7-7377-4130-9903-1E9A76349285")] 28 [Item("Analytic Quotient", "The analytic quotient function aq(a,b) = a / sqrt(b²+1) can be used as an " + 29 "alternative to protected division. See H. Drieberg and P. Rocket, The Use of an Analytic Quotient Operator" + 30 " in Genetic Programming. IEEE Transactions on Evolutionary Computation, Vol. 17, No. 1, February 2013, pp. 146 -- 152")] 31 public sealed class AnalyticQuotient : Symbol { 27 [StorableType("5477A8C6-E557-4E2E-9326-16DF26F5D6A8")] 28 [Item("Euclidean Distance", "Symbol that represents the Euclidean distance function.")] 29 public sealed class EuclideanDistance : Symbol { 32 30 private const int minimumArity = 2; 33 31 private const int maximumArity = 2; … … 41 39 42 40 [StorableConstructor] 43 private AnalyticQuotient(StorableConstructorFlag _) : base(_) { }44 private AnalyticQuotient(AnalyticQuotientoriginal, Cloner cloner) : base(original, cloner) { }41 private EuclideanDistance(StorableConstructorFlag _) : base(_) { } 42 private EuclideanDistance(EuclideanDistance original, Cloner cloner) : base(original, cloner) { } 45 43 public override IDeepCloneable Clone(Cloner cloner) { 46 return new AnalyticQuotient(this, cloner);44 return new EuclideanDistance(this, cloner); 47 45 } 48 public AnalyticQuotient() : base("AnalyticQuotient", "The analytic quotient function aq(a,b) = a / sqrt(b²+1) can be used as an " + 49 "alternative to protected division. See H. Drieberg and P. Rocket, The Use of an Analytic Quotient Operator" + 50 " in Genetic Programming. IEEE Transactions on Evolutionary Computation, Vol. 17, No. 1, February 2013, pp. 146 -- 152") { } 46 public EuclideanDistance() : base("Euclidean Distance", "Symbol that represents the Euclidean distance function.") { } 51 47 } 52 48 } -
branches/3040_VectorBasedGP/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Symbols/Kurtosis.cs
r17551 r17554 25 25 using HEAL.Attic; 26 26 namespace HeuristicLab.Problems.DataAnalysis.Symbolic { 27 [StorableType(" 615033EC-6A76-4DE7-B55F-BB228D6A8166")]28 [Item(" StandardDeviation", "Symbol that represents the standard deviationfunction.")]29 public sealed class StandardDeviation: Symbol {27 [StorableType("FDE431E4-C20F-4203-9054-6175A8B734A7")] 28 [Item("Kurtosis", "Symbol that represents the kurtosis function.")] 29 public sealed class Kurtosis : Symbol { 30 30 private const int minimumArity = 1; 31 31 private const int maximumArity = 1; … … 39 39 40 40 [StorableConstructor] 41 private StandardDeviation(StorableConstructorFlag _) : base(_) { }42 private StandardDeviation(StandardDeviationoriginal, Cloner cloner) : base(original, cloner) { }41 private Kurtosis(StorableConstructorFlag _) : base(_) { } 42 private Kurtosis(Kurtosis original, Cloner cloner) : base(original, cloner) { } 43 43 public override IDeepCloneable Clone(Cloner cloner) { 44 return new StandardDeviation(this, cloner);44 return new Kurtosis(this, cloner); 45 45 } 46 public StandardDeviation() : base("StandardDeviation", "Symbol that represents the standard deviationfunction.") { }46 public Kurtosis() : base("Kurtosis", "Symbol that represents the kurtosis function.") { } 47 47 } 48 48 } -
branches/3040_VectorBasedGP/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Symbols/Length.cs
r17551 r17554 25 25 using HEAL.Attic; 26 26 namespace HeuristicLab.Problems.DataAnalysis.Symbolic { 27 [StorableType(" 615033EC-6A76-4DE7-B55F-BB228D6A8166")]28 [Item(" StandardDeviation", "Symbol that represents the standard deviationfunction.")]29 public sealed class StandardDeviation: Symbol {27 [StorableType("E3634514-DAC3-48FF-93D2-F3AD0E559C07")] 28 [Item("Length", "Symbol that represents the length function.")] 29 public sealed class Length : Symbol { 30 30 private const int minimumArity = 1; 31 31 private const int maximumArity = 1; … … 39 39 40 40 [StorableConstructor] 41 private StandardDeviation(StorableConstructorFlag _) : base(_) { }42 private StandardDeviation(StandardDeviationoriginal, Cloner cloner) : base(original, cloner) { }41 private Length(StorableConstructorFlag _) : base(_) { } 42 private Length(Length original, Cloner cloner) : base(original, cloner) { } 43 43 public override IDeepCloneable Clone(Cloner cloner) { 44 return new StandardDeviation(this, cloner);44 return new Length(this, cloner); 45 45 } 46 public StandardDeviation() : base("StandardDeviation", "Symbol that represents the standard deviationfunction.") { }46 public Length() : base("Length", "Symbol that represents the length function.") { } 47 47 } 48 48 } -
branches/3040_VectorBasedGP/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Symbols/Max.cs
r17551 r17554 26 26 27 27 namespace HeuristicLab.Problems.DataAnalysis.Symbolic { 28 [StorableType(" 2AE24E16-849E-4D54-A35B-7FE64BEF8ECB")]29 [Item("M ean", "Symbol that represents the meanfunction.")]30 public sealed class M ean: Symbol {28 [StorableType("1FFBD7DA-C474-4E99-B24F-AAD6B8B3EB35")] 29 [Item("Min", "Symbol that represents the max function.")] 30 public sealed class Max : Symbol { 31 31 private const int minimumArity = 1; 32 32 private const int maximumArity = 1; … … 40 40 41 41 [StorableConstructor] 42 private M ean(StorableConstructorFlag _) : base(_) { }43 private M ean(Meanoriginal, Cloner cloner) : base(original, cloner) { }42 private Max(StorableConstructorFlag _) : base(_) { } 43 private Max(Max original, Cloner cloner) : base(original, cloner) { } 44 44 public override IDeepCloneable Clone(Cloner cloner) { 45 return new M ean(this, cloner);45 return new Max(this, cloner); 46 46 } 47 public M ean() : base("Mean", "Symbol that represents the meanfunction.") { }47 public Max() : base("Max", "Symbol that represents the max function.") { } 48 48 } 49 49 } -
branches/3040_VectorBasedGP/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Symbols/Min.cs
r17551 r17554 26 26 27 27 namespace HeuristicLab.Problems.DataAnalysis.Symbolic { 28 [StorableType(" 2AE24E16-849E-4D54-A35B-7FE64BEF8ECB")]29 [Item("M ean", "Symbol that represents the mean function.")]30 public sealed class M ean : Symbol {28 [StorableType("AB40A794-51A7-45ED-AF83-90D61BE4158D")] 29 [Item("Min", "Symbol that represents the min function.")] 30 public sealed class Min : Symbol { 31 31 private const int minimumArity = 1; 32 32 private const int maximumArity = 1; … … 40 40 41 41 [StorableConstructor] 42 private M ean(StorableConstructorFlag _) : base(_) { }43 private M ean(Mean original, Cloner cloner) : base(original, cloner) { }42 private Min(StorableConstructorFlag _) : base(_) { } 43 private Min(Min original, Cloner cloner) : base(original, cloner) { } 44 44 public override IDeepCloneable Clone(Cloner cloner) { 45 return new M ean(this, cloner);45 return new Min(this, cloner); 46 46 } 47 public M ean() : base("Mean", "Symbol that represents the mean function.") { }47 public Min() : base("Min", "Symbol that represents the min function.") { } 48 48 } 49 49 } -
branches/3040_VectorBasedGP/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Symbols/Skewness.cs
r17551 r17554 25 25 using HEAL.Attic; 26 26 namespace HeuristicLab.Problems.DataAnalysis.Symbolic { 27 [StorableType(" 615033EC-6A76-4DE7-B55F-BB228D6A8166")]28 [Item("S tandardDeviation", "Symbol that represents the standard deviationfunction.")]29 public sealed class S tandardDeviation: Symbol {27 [StorableType("7C645DC6-6904-4E9C-A9DE-474F66AD6563")] 28 [Item("Skewness", "Symbol that represents the skewness function.")] 29 public sealed class Skewness : Symbol { 30 30 private const int minimumArity = 1; 31 31 private const int maximumArity = 1; … … 39 39 40 40 [StorableConstructor] 41 private S tandardDeviation(StorableConstructorFlag _) : base(_) { }42 private S tandardDeviation(StandardDeviationoriginal, Cloner cloner) : base(original, cloner) { }41 private Skewness(StorableConstructorFlag _) : base(_) { } 42 private Skewness(Skewness original, Cloner cloner) : base(original, cloner) { } 43 43 public override IDeepCloneable Clone(Cloner cloner) { 44 return new S tandardDeviation(this, cloner);44 return new Skewness(this, cloner); 45 45 } 46 public S tandardDeviation() : base("StandardDeviation", "Symbol that represents the standard deviationfunction.") { }46 public Skewness() : base("Skewness", "Symbol that represents the skewness function.") { } 47 47 } 48 48 } -
branches/3040_VectorBasedGP/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Symbols/Variance.cs
r17551 r17554 25 25 using HEAL.Attic; 26 26 namespace HeuristicLab.Problems.DataAnalysis.Symbolic { 27 [StorableType(" 615033EC-6A76-4DE7-B55F-BB228D6A8166")]28 [Item(" StandardDeviation", "Symbol that represents the standard deviationfunction.")]29 public sealed class StandardDeviation: Symbol {27 [StorableType("E9371D4B-104A-43CF-82F9-4F3B41B2FC3D")] 28 [Item("Variance", "Symbol that represents the variance function.")] 29 public sealed class Variance : Symbol { 30 30 private const int minimumArity = 1; 31 31 private const int maximumArity = 1; … … 39 39 40 40 [StorableConstructor] 41 private StandardDeviation(StorableConstructorFlag _) : base(_) { }42 private StandardDeviation(StandardDeviationoriginal, Cloner cloner) : base(original, cloner) { }41 private Variance(StorableConstructorFlag _) : base(_) { } 42 private Variance(Variance original, Cloner cloner) : base(original, cloner) { } 43 43 public override IDeepCloneable Clone(Cloner cloner) { 44 return new StandardDeviation(this, cloner);44 return new Variance(this, cloner); 45 45 } 46 public StandardDeviation() : base("StandardDeviation", "Symbol that represents the standard deviationfunction.") { }46 public Variance() : base("Variance", "Symbol that represents the variance function.") { } 47 47 } 48 48 }
Note: See TracChangeset
for help on using the changeset viewer.