- Timestamp:
- 04/01/20 15:49:03 (5 years ago)
- Location:
- branches/3040_VectorBasedGP
- Files:
-
- 3 edited
Legend:
- Unmodified
- Added
- Removed
-
branches/3040_VectorBasedGP/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression.Views/3.4/InteractiveSymbolicRegressionSolutionSimplifierView.cs
r17472 r17489 43 43 44 44 var tree = Content?.Model?.SymbolicExpressionTree; 45 btnOptimizeConstants.Enabled = tree != null && NonlinearLeastSquaresConstantOptimizationEvaluator.CanOptimizeConstants(tree); 45 //btnOptimizeConstants.Enabled = tree != null && NonlinearLeastSquaresConstantOptimizationEvaluator.CanOptimizeConstants(tree); 46 btnOptimizeConstants.Enabled = tree != null && TensorFlowConstantOptimizationEvaluator.CanOptimizeConstants(tree); 46 47 } 47 48 … … 65 66 do { 66 67 prevResult = result; 67 tree = NonlinearLeastSquaresConstantOptimizationEvaluator.OptimizeTree(tree, regressionProblemData, regressionProblemData.TrainingIndices, 68 applyLinearScaling: true, maxIterations: constOptIterations, updateVariableWeights: true, 69 cancellationToken: cancellationToken, iterationCallback: (args, func, obj) => { 70 double newProgressValue = progress.ProgressValue + (1.0 / (constOptIterations + 2) / maxRepetitions); // (constOptIterations + 2) iterations are reported 71 progress.ProgressValue = Math.Min(newProgressValue, 1.0); 72 }); 68 //tree = NonlinearLeastSquaresConstantOptimizationEvaluator.OptimizeTree(tree, regressionProblemData, regressionProblemData.TrainingIndices, 69 // applyLinearScaling: true, maxIterations: constOptIterations, updateVariableWeights: true, 70 // cancellationToken: cancellationToken, iterationCallback: (args, func, obj) => { 71 // double newProgressValue = progress.ProgressValue + (1.0 / (constOptIterations + 2) / maxRepetitions); // (constOptIterations + 2) iterations are reported 72 // progress.ProgressValue = Math.Min(newProgressValue, 1.0); 73 // }); 74 tree = TensorFlowConstantOptimizationEvaluator.OptimizeTree(tree, regressionProblemData, regressionProblemData.TrainingIndices, 75 applyLinearScaling: true, updateVariableWeights: true, maxIterations: 10, learningRate: 0.001); 73 76 result = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(model.Interpreter, tree, 74 77 model.LowerEstimationLimit, model.UpperEstimationLimit, regressionProblemData, regressionProblemData.TrainingIndices, applyLinearScaling: true); -
branches/3040_VectorBasedGP/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/SingleObjective/Evaluators/TensorFlowConstantOptimizationEvaluator.cs
r17476 r17489 19 19 */ 20 20 #endregion 21 22 #define EXPLICIT_SHAPE 21 23 22 24 using System; … … 94 96 CancellationToken cancellationToken = default(CancellationToken), EvaluationsCounter counter = null) { 95 97 96 var vectorVariables = tree.IterateNodesBreadth()97 .OfType<VariableTreeNodeBase>()98 .Where(node => problemData.Dataset.VariableHasType<DoubleVector>(node.VariableName))99 .Select(node => node.VariableName);100 101 int? vectorLength = null;102 if (vectorVariables.Any()) {103 vectorLength = vectorVariables.Select(var => problemData.Dataset.GetDoubleVectorValues(var, rows)).First().First().Count;104 }105 98 int numRows = rows.Count(); 99 var variableLengths = problemData.AllowedInputVariables.ToDictionary( 100 var => var, 101 var => { 102 if (problemData.Dataset.VariableHasType<double>(var)) return 1; 103 if (problemData.Dataset.VariableHasType<DoubleVector>(var)) return problemData.Dataset.GetDoubleVectorValue(var, 0).Count; 104 throw new NotSupportedException($"Type of variable {var} is not supported."); 105 }); 106 106 107 107 bool success = TreeToTensorConverter.TryConvert(tree, 108 numRows, v ectorLength,108 numRows, variableLengths, 109 109 updateVariableWeights, applyLinearScaling, 110 110 out Tensor prediction, 111 111 out Dictionary<Tensor, string> parameters, out List<Tensor> variables/*, out double[] initialConstants*/); 112 112 113 var target = tf.placeholder(tf.float64, name: problemData.TargetVariable); 114 int samples = rows.Count(); 113 #if EXPLICIT_SHAPE 114 var target = tf.placeholder(tf.float64, new TensorShape(numRows, 1), name: problemData.TargetVariable); 115 #endif 115 116 // mse 116 var costs = tf.reduce_sum(tf.square( prediction - target)) / (2.0 * samples);117 var costs = tf.reduce_sum(tf.square(target - prediction)) / (2.0 * numRows); 117 118 var optimizer = tf.train.GradientDescentOptimizer((float)learningRate).minimize(costs); 118 119 … … 124 125 if (problemData.Dataset.VariableHasType<double>(variableName)) { 125 126 var data = problemData.Dataset.GetDoubleValues(variableName, rows).ToArray(); 126 if (vectorLength.HasValue) {127 var vectorData = new double[numRows][];128 for (int i = 0; i < numRows; i++)129 vectorData[i] = Enumerable.Repeat(data[i], vectorLength.Value).ToArray();130 variablesFeed.Add(variable, np.array(vectorData));131 } else132 variablesFeed.Add(variable, np.array(data, copy: false));127 //if (vectorLength.HasValue) { 128 // var vectorData = new double[numRows][]; 129 // for (int i = 0; i < numRows; i++) 130 // vectorData[i] = Enumerable.Repeat(data[i], vectorLength.Value).ToArray(); 131 // variablesFeed.Add(variable, np.array(vectorData)); 132 //} else 133 variablesFeed.Add(variable, np.array(data, copy: false).reshape(numRows, 1)); 133 134 //} else if (problemData.Dataset.VariableHasType<string>(variableName)) { 134 135 // variablesFeed.Add(variable, problemData.Dataset.GetStringValues(variableName, rows)); … … 140 141 } 141 142 var targetData = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows).ToArray(); 142 variablesFeed.Add(target, np.array(targetData, copy: false)); 143 143 variablesFeed.Add(target, np.array(targetData, copy: false).reshape(numRows, 1)); 144 144 145 145 using (var session = tf.Session()) { 146 146 session.run(tf.global_variables_initializer()); 147 148 // https://github.com/SciSharp/TensorFlow.NET/wiki/Debugging 149 tf.train.export_meta_graph(@"C:\temp\TFboard\graph.meta", as_text: false); 147 150 148 151 Trace.WriteLine("Weights:"); -
branches/3040_VectorBasedGP/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Converters/TreeToTensorConverter.cs
r17476 r17489 20 20 #endregion 21 21 22 #define EXPLICIT_SHAPE 23 22 24 using System; 23 25 using System.Collections.Generic; 24 26 using System.Linq; 25 27 using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; 28 using NumSharp; 26 29 using Tensorflow; 27 30 using static Tensorflow.Binding; … … 54 57 #endregion 55 58 56 public static bool TryConvert(ISymbolicExpressionTree tree, int numRows, int? vectorLength,59 public static bool TryConvert(ISymbolicExpressionTree tree, int numRows, Dictionary<string, int> variableLengths, 57 60 bool makeVariableWeightsVariable, bool addLinearScalingTerms, 58 61 out Tensor graph, out Dictionary<Tensor, string> parameters, out List<Tensor> variables … … 60 63 61 64 try { 62 var converter = new TreeToTensorConverter(numRows, v ectorLength, makeVariableWeightsVariable, addLinearScalingTerms);65 var converter = new TreeToTensorConverter(numRows, variableLengths, makeVariableWeightsVariable, addLinearScalingTerms); 63 66 graph = converter.ConvertNode(tree.Root.GetSubtree(0)); 64 67 … … 78 81 79 82 private readonly int numRows; 80 private readonly int? vectorLength;83 private readonly Dictionary<string, int> variableLengths; 81 84 private readonly bool makeVariableWeightsVariable; 82 85 private readonly bool addLinearScalingTerms; … … 86 89 private readonly List<Tensor> variables = new List<Tensor>(); 87 90 88 private TreeToTensorConverter(int numRows, int? vectorLength, bool makeVariableWeightsVariable, bool addLinearScalingTerms) {91 private TreeToTensorConverter(int numRows, Dictionary<string, int> variableLengths, bool makeVariableWeightsVariable, bool addLinearScalingTerms) { 89 92 this.numRows = numRows; 90 this.v ectorLength = vectorLength;93 this.variableLengths = variableLengths; 91 94 this.makeVariableWeightsVariable = makeVariableWeightsVariable; 92 95 this.addLinearScalingTerms = addLinearScalingTerms; 93 96 } 97 94 98 95 99 … … 98 102 var value = ((ConstantTreeNode)node).Value; 99 103 //initialConstants.Add(value); 100 var var = tf.Variable(value, name: $"c_{variables.Count}", dtype: tf.float64); 104 #if EXPLICIT_SHAPE 105 //var var = (RefVariable)tf.VariableV1(value, name: $"c_{variables.Count}", dtype: tf.float64, shape: new[] { 1, 1 }); 106 var value_arr = np.array(value).reshape(1, 1); 107 var var = tf.Variable(value_arr, name: $"c_{variables.Count}", dtype: tf.float64); 108 #endif 109 //var var = tf.Variable(value, name: $"c_{variables.Count}", dtype: tf.float64/*, shape: new[] { 1, 1 }*/); 101 110 variables.Add(var); 102 111 return var; … … 109 118 //var varValue = factorVarNode != null ? factorVarNode.VariableValue : string.Empty; 110 119 //var par = FindOrCreateParameter(parameters, varNode.VariableName, varValue); 111 var shape = vectorLength.HasValue 112 ? new TensorShape(numRows, vectorLength.Value) 113 : new TensorShape(numRows); 114 var par = tf.placeholder(tf.float64, shape: shape, name: varNode.VariableName); 120 #if EXPLICIT_SHAPE 121 var par = tf.placeholder(tf.float64, new TensorShape(numRows, variableLengths[varNode.VariableName]), name: varNode.VariableName); 122 #endif 115 123 parameters.Add(par, varNode.VariableName); 116 124 117 125 if (makeVariableWeightsVariable) { 118 126 //initialConstants.Add(varNode.Weight); 119 var w = tf.Variable(varNode.Weight, name: $"w_{varNode.VariableName}_{variables.Count}", dtype: tf.float64); 127 #if EXPLICIT_SHAPE 128 //var w = (RefVariable)tf.VariableV1(varNode.Weight, name: $"w_{varNode.VariableName}_{variables.Count}", dtype: tf.float64, shape: new[] { 1, 1 }); 129 var w_arr = np.array(varNode.Weight).reshape(1, 1); 130 var w = tf.Variable(w_arr, name: $"w_{varNode.VariableName}", dtype: tf.float64); 131 #endif 132 //var w = tf.Variable(varNode.Weight, name: $"w_{varNode.VariableName}_{variables.Count}", dtype: tf.float64/*, shape: new[] { 1, 1 }*/); 120 133 variables.Add(w); 121 134 return w * par; … … 125 138 } 126 139 127 if (node.Symbol is FactorVariable) { 128 var factorVarNode = node as FactorVariableTreeNode; 129 var products = new List<Tensor>(); 130 foreach (var variableValue in factorVarNode.Symbol.GetVariableValues(factorVarNode.VariableName)) { 131 //var par = FindOrCreateParameter(parameters, factorVarNode.VariableName, variableValue); 132 var par = tf.placeholder(tf.float64, shape: new TensorShape(numRows), name: factorVarNode.VariableName); 133 parameters.Add(par, factorVarNode.VariableName); 134 135 var value = factorVarNode.GetValue(variableValue); 136 //initialConstants.Add(value); 137 var wVar = tf.Variable(value, name: $"f_{factorVarNode.VariableName}_{variables.Count}"); 138 variables.Add(wVar); 139 140 products.add(wVar * par); 141 } 142 143 return products.Aggregate((a, b) => a + b); 144 } 140 //if (node.Symbol is FactorVariable) { 141 // var factorVarNode = node as FactorVariableTreeNode; 142 // var products = new List<Tensor>(); 143 // foreach (var variableValue in factorVarNode.Symbol.GetVariableValues(factorVarNode.VariableName)) { 144 // //var par = FindOrCreateParameter(parameters, factorVarNode.VariableName, variableValue); 145 // var par = tf.placeholder(tf.float64, new TensorShape(numRows, 1), name: factorVarNode.VariableName); 146 // parameters.Add(par, factorVarNode.VariableName); 147 148 // var value = factorVarNode.GetValue(variableValue); 149 // //initialConstants.Add(value); 150 // var wVar = (RefVariable)tf.VariableV1(value, name: $"f_{factorVarNode.VariableName}_{variables.Count}", dtype: tf.float64, shape: new[] { 1, 1 }); 151 // //var wVar = tf.Variable(value, name: $"f_{factorVarNode.VariableName}_{variables.Count}"/*, shape: new[] { 1, 1 }*/); 152 // variables.Add(wVar); 153 154 // products.add(wVar * par); 155 // } 156 157 // return products.Aggregate((a, b) => a + b); 158 //} 145 159 146 160 if (node.Symbol is Addition) { … … 248 262 return tf.reduce_mean( 249 263 ConvertNode(node.GetSubtree(0)), 250 axis: new[] { 1 }); 264 axis: new[] { 1 }, 265 keepdims: true); 251 266 } 252 267 … … 261 276 return tf.reduce_sum( 262 277 ConvertNode(node.GetSubtree(0)), 263 axis: new[] { 1 }); 278 axis: new[] { 1 }, 279 keepdims: true); 264 280 } 265 281 … … 267 283 if (addLinearScalingTerms) { 268 284 // scaling variables α, β are given at the beginning of the parameter vector 269 var alpha = tf.Variable(1.0, name: $"alpha_{1.0}", dtype: tf.float64); 270 var beta = tf.Variable(0.0, name: $"beta_{0.0}", dtype: tf.float64); 285 #if EXPLICIT_SHAPE 286 //var alpha = (RefVariable)tf.VariableV1(1.0, name: $"alpha_{1.0}", dtype: tf.float64, shape: new[] { 1, 1 }); 287 //var beta = (RefVariable)tf.VariableV1(0.0, name: $"beta_{0.0}", dtype: tf.float64, shape: new[] { 1, 1 }); 288 289 var alpha_arr = np.array(1.0).reshape(1, 1); 290 var alpha = tf.Variable(alpha_arr, name: $"alpha", dtype: tf.float64); 291 var beta_arr = np.array(1.0).reshape(1, 1); 292 var beta = tf.Variable(beta_arr, name: $"beta", dtype: tf.float64); 293 #endif 294 //var alpha = tf.Variable(1.0, name: $"alpha_{1.0}", dtype: tf.float64/*, shape: new[] { 1, 1 }*/); 295 //var beta = tf.Variable(0.0, name: $"beta_{0.0}", dtype: tf.float64/*, shape: new[] { 1, 1 }*/); 271 296 variables.Add(alpha); 272 297 variables.Add(beta); … … 277 302 278 303 throw new NotSupportedException($"Node symbol {node.Symbol} is not supported."); 279 }280 281 // for each factor variable value we need a parameter which represents a binary indicator for that variable & value combination282 // each binary indicator is only necessary once. So we only create a parameter if this combination is not yet available283 private static Tensor FindOrCreateParameter(Dictionary<DataForVariable, Tensor> parameters, string varName, string varValue = "") {284 var data = new DataForVariable(varName, varValue);285 286 if (!parameters.TryGetValue(data, out var par)) {287 // not found -> create new parameter and entries in names and values lists288 par = tf.placeholder(tf.float64, shape: new TensorShape(-1), name: varName);289 parameters.Add(data, par);290 }291 return par;292 304 } 293 305
Note: See TracChangeset
for help on using the changeset viewer.