- Timestamp:
- 02/28/20 10:31:57 (5 years ago)
- Location:
- branches/3040_VectorBasedGP/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4
- Files:
-
- 8 deleted
- 5 edited
- 1 copied
Legend:
- Unmodified
- Added
- Removed
-
branches/3040_VectorBasedGP/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Grammars/TypeCoherentExpressionGrammar.cs
r17401 r17455 42 42 private const string SpecialFunctionsName = "Special Functions"; 43 43 private const string TimeSeriesSymbolsName = "Time Series Symbols"; 44 private const string BasicVectorOperationSymbolsName = "Basic Vector Operations";45 private const string VectorAggregationSymbolsName = "Vector Aggregation";46 44 private const string VectorSymbolsName = "Vector Symbols"; 47 45 … … 116 114 var laggedVariable = new LaggedVariable(); 117 115 var autoregressiveVariable = new AutoregressiveTargetVariable(); 118 119 var vectorVariable = new VectorVariable();120 var vectorAdd = new VectorAddition();121 var vectorSub = new VectorSubtraction();122 var vectorMul = new VectorMultiplication();123 var vectorDiv = new VectorDivision();124 var vectorSum = new VectorSum();125 var vectorAvg = new VectorMean();126 116 #endregion 127 117 … … 143 133 144 134 var timeSeriesSymbols = new GroupSymbol(TimeSeriesSymbolsName, new List<ISymbol> { timeLag, integral, derivative, laggedVariable, autoregressiveVariable }); 145 146 var basicVectorOperationSymbols = new GroupSymbol(BasicVectorOperationSymbolsName, new List<ISymbol>() { vectorAdd, vectorSub, vectorMul, vectorDiv });147 var vectorAggregationSymbols = new GroupSymbol(VectorAggregationSymbolsName, new List<ISymbol>() { vectorSum, vectorAvg });148 var vectorSymbols = new GroupSymbol(VectorSymbolsName, new List<ISymbol>() { vectorVariable, basicVectorOperationSymbols, vectorAggregationSymbols });149 135 #endregion 150 136 … … 153 139 AddSymbol(conditionalSymbols); 154 140 AddSymbol(timeSeriesSymbols); 155 AddSymbol(vectorSymbols);156 141 157 142 #region subtree count configuration … … 185 170 SetSubtreeCount(laggedVariable, 0, 0); 186 171 SetSubtreeCount(autoregressiveVariable, 0, 0); 187 188 189 SetSubtreeCount(vectorVariable, 0, 0);190 SetSubtreeCount(basicVectorOperationSymbols, 2, 2);191 SetSubtreeCount(vectorAggregationSymbols, 1, 1);192 172 #endregion 193 173 … … 258 238 AddAllowedChildSymbol(derivative, powerSymbols); 259 239 AddAllowedChildSymbol(derivative, conditionSymbols); 260 261 AddAllowedChildSymbol(realValuedSymbols, vectorAggregationSymbols);262 AddAllowedChildSymbol(vectorAggregationSymbols, basicVectorOperationSymbols);263 AddAllowedChildSymbol(vectorAggregationSymbols, vectorVariable);264 AddAllowedChildSymbol(basicVectorOperationSymbols, basicVectorOperationSymbols);265 AddAllowedChildSymbol(basicVectorOperationSymbols, vectorVariable);266 240 #endregion 267 241 } -
branches/3040_VectorBasedGP/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/HeuristicLab.Problems.DataAnalysis.Symbolic-3.4.csproj
r17448 r17455 174 174 <Compile Include="Interpreter\SymbolicDataAnalysisExpressionCompiledTreeInterpreter.cs" /> 175 175 <Compile Include="Interpreter\SymbolicDataAnalysisExpressionTreeBatchInterpreter.cs" /> 176 <Compile Include="Interpreter\SymbolicDataAnalysisExpressionTreeVectorInterpreter.cs" /> 176 177 <Compile Include="Interpreter\SymbolicDataAnalysisExpressionTreeNativeInterpreter.cs" /> 177 178 <Compile Include="Selectors\DiversitySelector.cs" /> … … 223 224 <Compile Include="SymbolicDataAnalysisProblem.cs" /> 224 225 <Compile Include="SymbolicDataAnalysisSolutionImpactValuesCalculator.cs" /> 225 <Compile Include="Symbols\VectorMean.cs" />226 <Compile Include="Symbols\VectorSum.cs" />227 <Compile Include="Symbols\VectorSubtraction.cs" />228 <Compile Include="Symbols\VectorMultiplication.cs" />229 <Compile Include="Symbols\VectorDivision.cs" />230 <Compile Include="Symbols\VectorAddition.cs" />231 226 <Compile Include="Symbols\Addition.cs" /> 232 227 <Compile Include="Symbols\AnalyticQuotient.cs" /> … … 247 242 <Compile Include="Symbols\CubeRoot.cs" /> 248 243 <Compile Include="Symbols\HyperbolicTangent.cs" /> 249 <Compile Include="Symbols\VectorVariableTreeNode.cs" />250 <Compile Include="Symbols\VectorVariable.cs" />251 244 <Compile Include="Symbols\VariableBase.cs" /> 252 245 <Compile Include="Symbols\VariableTreeNodeBase.cs" /> -
branches/3040_VectorBasedGP/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Interpreter/OpCodes.cs
r17401 r17455 22 22 using System; 23 23 using System.Collections.Generic; 24 using System.Linq;25 24 using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; 26 25 … … 78 77 Cube = 50, 79 78 CubeRoot = 51, 80 Tanh = 52, 81 VectorVariable = 53, 82 VectorAdd = 54, 83 VectorSub = 55, 84 VectorMul = 56, 85 VectorDiv = 57, 86 VectorSum = 58, 87 VectorAvg = 59 79 Tanh = 52 88 80 }; 89 81 public static class OpCodes { … … 141 133 public const byte CubeRoot = (byte)OpCode.CubeRoot; 142 134 public const byte Tanh = (byte)OpCode.Tanh; 143 public const byte VectorVariable = (byte)OpCode.VectorVariable;144 public const byte VectorAdd = (byte)OpCode.VectorAdd;145 public const byte VectorSub = (byte)OpCode.VectorSub;146 public const byte VectorMul = (byte)OpCode.VectorMul;147 public const byte VectorDiv = (byte)OpCode.VectorDiv;148 public const byte VectorSum = (byte)OpCode.VectorSum;149 public const byte VectorMean = (byte)OpCode.VectorAvg;150 151 135 152 136 private static Dictionary<Type, byte> symbolToOpcode = new Dictionary<Type, byte>() { … … 203 187 { typeof(AnalyticQuotient), OpCodes.AnalyticQuotient }, 204 188 { typeof(Cube), OpCodes.Cube }, 205 { typeof(CubeRoot), OpCodes.CubeRoot }, 206 { typeof(VectorVariable), OpCodes.VectorVariable }, 207 { typeof(VectorAddition), OpCodes.VectorAdd }, 208 { typeof(VectorSubtraction), OpCodes.VectorSub }, 209 { typeof(VectorMultiplication), OpCodes.VectorMul }, 210 { typeof(VectorDivision), OpCodes.VectorDiv }, 211 { typeof(VectorSum), OpCodes.VectorSum }, 212 { typeof(VectorMean), OpCodes.VectorMean } 189 { typeof(CubeRoot), OpCodes.CubeRoot } 213 190 }; 214 191 -
branches/3040_VectorBasedGP/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Interpreter/SymbolicDataAnalysisExpressionTreeInterpreter.cs
r17448 r17455 20 20 #endregion 21 21 22 using DoubleVector = MathNet.Numerics.LinearAlgebra.Vector<double>;23 24 22 using System; 25 23 using System.Collections.Generic; … … 30 28 using HeuristicLab.Parameters; 31 29 using HEAL.Attic; 32 using MathNet.Numerics.Statistics;33 30 34 31 namespace HeuristicLab.Problems.DataAnalysis.Symbolic { … … 152 149 var factorTreeNode = instr.dynamicNode as BinaryFactorVariableTreeNode; 153 150 instr.data = dataset.GetReadOnlyStringValues(factorTreeNode.VariableName); 154 } else if (instr.opCode == OpCodes.VectorVariable) {155 var vectorVariableTreeNode = (VectorVariableTreeNode)instr.dynamicNode;156 instr.data = dataset.GetReadOnlyDoubleVectorValues(vectorVariableTreeNode.VariableName);157 151 } else if (instr.opCode == OpCodes.LagVariable) { 158 152 var laggedVariableTreeNode = (LaggedVariableTreeNode)instr.dynamicNode; … … 535 529 } 536 530 537 case OpCodes.VectorSum: {538 DoubleVector v = VectorEvaluate(dataset, ref row, state);539 return v.Sum();540 }541 case OpCodes.VectorMean: {542 DoubleVector v = VectorEvaluate(dataset, ref row, state);543 return v.Mean();544 }545 546 531 default: 547 532 throw new NotSupportedException(); 548 533 } 549 534 } 550 551 public virtual DoubleVector VectorEvaluate(IDataset dataset, ref int row, InterpreterState state) {552 Instruction currentInstr = state.NextInstruction();553 switch (currentInstr.opCode) {554 case OpCodes.VectorAdd: {555 DoubleVector s = VectorEvaluate(dataset, ref row, state);556 for (int i = 1; i < currentInstr.nArguments; i++) {557 s += VectorEvaluate(dataset, ref row, state);558 }559 return s;560 }561 case OpCodes.VectorSub: {562 DoubleVector s = VectorEvaluate(dataset, ref row, state);563 for (int i = 1; i < currentInstr.nArguments; i++) {564 s -= VectorEvaluate(dataset, ref row, state);565 }566 return s;567 }568 case OpCodes.VectorMul: {569 DoubleVector s = VectorEvaluate(dataset, ref row, state);570 for (int i = 1; i < currentInstr.nArguments; i++) {571 s = s.PointwiseMultiply(VectorEvaluate(dataset, ref row, state));572 }573 return s;574 }575 case OpCodes.VectorDiv: {576 DoubleVector s = VectorEvaluate(dataset, ref row, state);577 for (int i = 1; i < currentInstr.nArguments; i++) {578 s /= VectorEvaluate(dataset, ref row, state);579 }580 return s;581 }582 583 case OpCodes.VectorVariable: {584 if (row < 0 || row >= dataset.Rows) return DoubleVector.Build.Dense(new[] { double.NaN });585 var vectorVarTreeNode = currentInstr.dynamicNode as VectorVariableTreeNode;586 return ((IList<DoubleVector>)currentInstr.data)[row] * vectorVarTreeNode.Weight;587 }588 default:589 throw new NotSupportedException();590 }591 }592 535 } 593 536 } -
branches/3040_VectorBasedGP/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Interpreter/SymbolicDataAnalysisExpressionTreeVectorInterpreter.cs
r17448 r17455 20 20 #endregion 21 21 22 using DoubleVector = MathNet.Numerics.LinearAlgebra.Vector<double>;23 24 22 using System; 25 23 using System.Collections.Generic; 24 using HeuristicLab.Analysis; 26 25 using HeuristicLab.Common; 27 26 using HeuristicLab.Core; … … 30 29 using HeuristicLab.Parameters; 31 30 using HEAL.Attic; 31 using MathNet.Numerics.LinearAlgebra; 32 32 using MathNet.Numerics.Statistics; 33 33 34 using DoubleVector = MathNet.Numerics.LinearAlgebra.Vector<double>; 35 34 36 namespace HeuristicLab.Problems.DataAnalysis.Symbolic { 35 [StorableType("FB94F333-B32A-44FB-A561-CBDE76693D20")] 36 [Item("SymbolicDataAnalysisExpressionTreeInterpreter", "Interpreter for symbolic expression trees including automatically defined functions.")] 37 public class SymbolicDataAnalysisExpressionTreeInterpreter : ParameterizedNamedItem, 38 ISymbolicDataAnalysisExpressionTreeInterpreter { 39 private const string CheckExpressionsWithIntervalArithmeticParameterName = "CheckExpressionsWithIntervalArithmetic"; 40 private const string CheckExpressionsWithIntervalArithmeticParameterDescription = "Switch that determines if the interpreter checks the validity of expressions with interval arithmetic before evaluating the expression."; 37 [StorableType("DE68A1D9-5AFC-4DDD-AB62-29F3B8FC28E0")] 38 [Item("SymbolicDataAnalysisExpressionTreeVectorInterpreter", "Interpreter for symbolic expression trees including vector arithmetic.")] 39 public class SymbolicDataAnalysisExpressionTreeVectorInterpreter : ParameterizedNamedItem, ISymbolicDataAnalysisExpressionTreeInterpreter { 40 41 41 private const string EvaluatedSolutionsParameterName = "EvaluatedSolutions"; 42 42 … … 50 50 51 51 #region parameter properties 52 public IFixedValueParameter<BoolValue> CheckExpressionsWithIntervalArithmeticParameter {53 get { return (IFixedValueParameter<BoolValue>)Parameters[CheckExpressionsWithIntervalArithmeticParameterName]; }54 }55 56 52 public IFixedValueParameter<IntValue> EvaluatedSolutionsParameter { 57 53 get { return (IFixedValueParameter<IntValue>)Parameters[EvaluatedSolutionsParameterName]; } … … 60 56 61 57 #region properties 62 public bool CheckExpressionsWithIntervalArithmetic {63 get { return CheckExpressionsWithIntervalArithmeticParameter.Value.Value; }64 set { CheckExpressionsWithIntervalArithmeticParameter.Value.Value = value; }65 }66 67 58 public int EvaluatedSolutions { 68 59 get { return EvaluatedSolutionsParameter.Value.Value; } … … 72 63 73 64 [StorableConstructor] 74 protected SymbolicDataAnalysisExpressionTreeInterpreter(StorableConstructorFlag _) : base(_) { } 75 76 protected SymbolicDataAnalysisExpressionTreeInterpreter(SymbolicDataAnalysisExpressionTreeInterpreter original, 77 Cloner cloner) 65 protected SymbolicDataAnalysisExpressionTreeVectorInterpreter(StorableConstructorFlag _) : base(_) { } 66 67 protected SymbolicDataAnalysisExpressionTreeVectorInterpreter(SymbolicDataAnalysisExpressionTreeVectorInterpreter original, Cloner cloner) 78 68 : base(original, cloner) { } 79 69 80 70 public override IDeepCloneable Clone(Cloner cloner) { 81 return new SymbolicDataAnalysisExpressionTreeInterpreter(this, cloner); 82 } 83 84 public SymbolicDataAnalysisExpressionTreeInterpreter() 85 : base("SymbolicDataAnalysisExpressionTreeInterpreter", "Interpreter for symbolic expression trees including automatically defined functions.") { 86 Parameters.Add(new FixedValueParameter<BoolValue>(CheckExpressionsWithIntervalArithmeticParameterName, "Switch that determines if the interpreter checks the validity of expressions with interval arithmetic before evaluating the expression.", new BoolValue(false))); 71 return new SymbolicDataAnalysisExpressionTreeVectorInterpreter(this, cloner); 72 } 73 74 public SymbolicDataAnalysisExpressionTreeVectorInterpreter() 75 : base("SymbolicDataAnalysisExpressionTreeVectorInterpreter", "Interpreter for symbolic expression trees including vector arithmetic.") { 87 76 Parameters.Add(new FixedValueParameter<IntValue>(EvaluatedSolutionsParameterName, "A counter for the total number of solutions the interpreter has evaluated", new IntValue(0))); 88 77 } 89 78 90 protected SymbolicDataAnalysisExpressionTree Interpreter(string name, string description)79 protected SymbolicDataAnalysisExpressionTreeVectorInterpreter(string name, string description) 91 80 : base(name, description) { 92 Parameters.Add(new FixedValueParameter<BoolValue>(CheckExpressionsWithIntervalArithmeticParameterName, "Switch that determines if the interpreter checks the validity of expressions with interval arithmetic before evaluating the expression.", new BoolValue(false)));93 81 Parameters.Add(new FixedValueParameter<IntValue>(EvaluatedSolutionsParameterName, "A counter for the total number of solutions the interpreter has evaluated", new IntValue(0))); 94 82 } … … 96 84 [StorableHook(HookType.AfterDeserialization)] 97 85 private void AfterDeserialization() { 98 var evaluatedSolutions = new IntValue(0); 99 var checkExpressionsWithIntervalArithmetic = new BoolValue(false); 100 if (Parameters.ContainsKey(EvaluatedSolutionsParameterName)) { 101 var evaluatedSolutionsParameter = (IValueParameter<IntValue>)Parameters[EvaluatedSolutionsParameterName]; 102 evaluatedSolutions = evaluatedSolutionsParameter.Value; 103 Parameters.Remove(EvaluatedSolutionsParameterName); 104 } 105 Parameters.Add(new FixedValueParameter<IntValue>(EvaluatedSolutionsParameterName, "A counter for the total number of solutions the interpreter has evaluated", evaluatedSolutions)); 106 if (Parameters.ContainsKey(CheckExpressionsWithIntervalArithmeticParameterName)) { 107 var checkExpressionsWithIntervalArithmeticParameter = (IValueParameter<BoolValue>)Parameters[CheckExpressionsWithIntervalArithmeticParameterName]; 108 Parameters.Remove(CheckExpressionsWithIntervalArithmeticParameterName); 109 checkExpressionsWithIntervalArithmetic = checkExpressionsWithIntervalArithmeticParameter.Value; 110 } 111 Parameters.Add(new FixedValueParameter<BoolValue>(CheckExpressionsWithIntervalArithmeticParameterName, CheckExpressionsWithIntervalArithmeticParameterDescription, checkExpressionsWithIntervalArithmetic)); 86 112 87 } 113 88 … … 121 96 122 97 private readonly object syncRoot = new object(); 123 public IEnumerable<double> GetSymbolicExpressionTreeValues(ISymbolicExpressionTree tree, IDataset dataset, 124 IEnumerable<int> rows) { 125 if (CheckExpressionsWithIntervalArithmetic) { 126 throw new NotSupportedException("Interval arithmetic is not yet supported in the symbolic data analysis interpreter."); 127 } 128 98 public IEnumerable<double> GetSymbolicExpressionTreeValues(ISymbolicExpressionTree tree, IDataset dataset, IEnumerable<int> rows) { 129 99 lock (syncRoot) { 130 100 EvaluatedSolutions++; // increment the evaluated solutions counter … … 134 104 foreach (var rowEnum in rows) { 135 105 int row = rowEnum; 136 yield return Evaluate(dataset, ref row, state); 106 var result = Evaluate(dataset, ref row, state); 107 if (!result.IsScalar) 108 throw new InvalidOperationException("Result of the tree is not a scalar."); 109 yield return result.Scalar; 137 110 state.Reset(); 138 111 } … … 152 125 var factorTreeNode = instr.dynamicNode as BinaryFactorVariableTreeNode; 153 126 instr.data = dataset.GetReadOnlyStringValues(factorTreeNode.VariableName); 154 } else if (instr.opCode == OpCodes.VectorVariable) {155 var vectorVariableTreeNode = (VectorVariableTreeNode)instr.dynamicNode;156 instr.data = dataset.GetReadOnlyDoubleVectorValues(vectorVariableTreeNode.VariableName);157 127 } else if (instr.opCode == OpCodes.LagVariable) { 158 128 var laggedVariableTreeNode = (LaggedVariableTreeNode)instr.dynamicNode; … … 168 138 } 169 139 170 public virtual double Evaluate(IDataset dataset, ref int row, InterpreterState state) { 140 141 public struct EvaluationResult { 142 public double Scalar { get; } 143 public bool IsScalar => !double.IsNaN(Scalar); 144 145 public DoubleVector Vector { get; } 146 public bool IsVector => !(Vector.Count == 1 && double.IsNaN(Vector[0])); 147 148 public bool IsNaN => !IsScalar && !IsVector; 149 150 public EvaluationResult(double scalar) { 151 Scalar = scalar; 152 Vector = NaNVector; 153 } 154 public EvaluationResult(DoubleVector vector) { 155 Vector = vector; 156 Scalar = double.NaN; 157 } 158 159 public override string ToString() { 160 if (IsScalar) return Scalar.ToString(); 161 if (IsVector) return Vector.ToVectorString(); 162 return "NaN"; 163 } 164 165 public static readonly EvaluationResult NaN = new EvaluationResult(double.NaN); 166 private static readonly DoubleVector NaNVector = DoubleVector.Build.Dense(1, double.NaN); 167 } 168 169 private static EvaluationResult ArithmeticApply(EvaluationResult lhs, EvaluationResult rhs, 170 Func<double, double, double> ssFunc = null, 171 Func<double, DoubleVector, DoubleVector> svFunc = null, 172 Func<DoubleVector, double, DoubleVector> vsFunc = null, 173 Func<DoubleVector, DoubleVector, DoubleVector> vvFunc = null) { 174 if (lhs.IsScalar && rhs.IsScalar && ssFunc != null) return new EvaluationResult(ssFunc(lhs.Scalar, rhs.Scalar)); 175 if (lhs.IsScalar && rhs.IsVector && svFunc != null) return new EvaluationResult(svFunc(lhs.Scalar, rhs.Vector)); 176 if (lhs.IsVector && rhs.IsScalar && vsFunc != null) return new EvaluationResult(vsFunc(lhs.Vector, rhs.Scalar)); 177 if (lhs.IsVector && rhs.IsVector && vvFunc != null) return new EvaluationResult(vvFunc(lhs.Vector, rhs.Vector)); 178 throw new NotSupportedException($"Unsupported combination of argument types: ({lhs}) / ({rhs})"); 179 } 180 181 private static EvaluationResult FunctionApply(EvaluationResult val, 182 Func<double, double> sFunc = null, 183 Func<DoubleVector, DoubleVector> vFunc = null) { 184 if (val.IsScalar && sFunc != null) return new EvaluationResult(sFunc(val.Scalar)); 185 if (val.IsVector && vFunc != null) return new EvaluationResult(vFunc(val.Vector)); 186 throw new NotSupportedException($"Unsupported argument type ({val})"); 187 } 188 189 public virtual EvaluationResult Evaluate(IDataset dataset, ref int row, InterpreterState state) { 171 190 Instruction currentInstr = state.NextInstruction(); 172 191 switch (currentInstr.opCode) { 173 192 case OpCodes.Add: { 174 double s= Evaluate(dataset, ref row, state);193 var cur = Evaluate(dataset, ref row, state); 175 194 for (int i = 1; i < currentInstr.nArguments; i++) { 176 s += Evaluate(dataset, ref row, state); 195 var op = Evaluate(dataset, ref row, state); 196 cur = ArithmeticApply(cur, op, 197 (s1, s2) => s1 + s2, 198 (s1, v2) => s1 + v2, 199 (v1, s2) => v1 + s2, 200 (v1, v2) => v1 + v2); 177 201 } 178 return s;202 return cur; 179 203 } 180 204 case OpCodes.Sub: { 181 double s= Evaluate(dataset, ref row, state);205 var cur = Evaluate(dataset, ref row, state); 182 206 for (int i = 1; i < currentInstr.nArguments; i++) { 183 s -= Evaluate(dataset, ref row, state); 207 var op = Evaluate(dataset, ref row, state); 208 cur = ArithmeticApply(cur, op, 209 (s1, s2) => s1 - s2, 210 (s1, v2) => s1 - v2, 211 (v1, s2) => v1 - s2, 212 (v1, v2) => v1 - v2); 184 213 } 185 if (currentInstr.nArguments == 1) { s = -s; } 186 return s; 214 return cur; 187 215 } 188 216 case OpCodes.Mul: { 189 double p= Evaluate(dataset, ref row, state);217 var cur = Evaluate(dataset, ref row, state); 190 218 for (int i = 1; i < currentInstr.nArguments; i++) { 191 p *= Evaluate(dataset, ref row, state); 219 var op = Evaluate(dataset, ref row, state); 220 cur = ArithmeticApply(cur, op, 221 (s1, s2) => s1 * s2, 222 (s1, v2) => s1 * v2, 223 (v1, s2) => v1 * s2, 224 (v1, v2) => v1.PointwiseMultiply(v2)); 192 225 } 193 return p;226 return cur; 194 227 } 195 228 case OpCodes.Div: { 196 double p= Evaluate(dataset, ref row, state);229 var cur = Evaluate(dataset, ref row, state); 197 230 for (int i = 1; i < currentInstr.nArguments; i++) { 198 p /= Evaluate(dataset, ref row, state); 231 var op = Evaluate(dataset, ref row, state); 232 cur = ArithmeticApply(cur, op, 233 (s1, s2) => s1 / s2, 234 (s1, v2) => s1 / v2, 235 (v1, s2) => v1 / s2, 236 (v1, v2) => v1 / v2); 199 237 } 200 if (currentInstr.nArguments == 1) { p = 1.0 / p; } 201 return p; 202 } 203 case OpCodes.Average: { 204 double sum = Evaluate(dataset, ref row, state); 205 for (int i = 1; i < currentInstr.nArguments; i++) { 206 sum += Evaluate(dataset, ref row, state); 207 } 208 return sum / currentInstr.nArguments; 238 return cur; 209 239 } 210 240 case OpCodes.Absolute: { 211 return Math.Abs(Evaluate(dataset, ref row, state)); 241 var cur = Evaluate(dataset, ref row, state); 242 return FunctionApply(cur, Math.Abs, DoubleVector.Abs); 212 243 } 213 244 case OpCodes.Tanh: { 214 return Math.Tanh(Evaluate(dataset, ref row, state)); 245 var cur = Evaluate(dataset, ref row, state); 246 return FunctionApply(cur, Math.Tanh, DoubleVector.Tanh); 215 247 } 216 248 case OpCodes.Cos: { 217 return Math.Cos(Evaluate(dataset, ref row, state)); 249 var cur = Evaluate(dataset, ref row, state); 250 return FunctionApply(cur, Math.Cos, DoubleVector.Cos); 218 251 } 219 252 case OpCodes.Sin: { 220 return Math.Sin(Evaluate(dataset, ref row, state)); 253 var cur = Evaluate(dataset, ref row, state); 254 return FunctionApply(cur, Math.Sin, DoubleVector.Sin); 221 255 } 222 256 case OpCodes.Tan: { 223 return Math.Tan(Evaluate(dataset, ref row, state)); 257 var cur = Evaluate(dataset, ref row, state); 258 return FunctionApply(cur, Math.Tan, DoubleVector.Tan); 224 259 } 225 260 case OpCodes.Square: { 226 return Math.Pow(Evaluate(dataset, ref row, state), 2); 261 var cur = Evaluate(dataset, ref row, state); 262 return FunctionApply(cur, 263 s => Math.Pow(s, 2), 264 v => v.PointwisePower(2)); 227 265 } 228 266 case OpCodes.Cube: { 229 return Math.Pow(Evaluate(dataset, ref row, state), 3); 267 var cur = Evaluate(dataset, ref row, state); 268 return FunctionApply(cur, 269 s => Math.Pow(s, 3), 270 v => v.PointwisePower(3)); 230 271 } 231 272 case OpCodes.Power: { 232 double x = Evaluate(dataset, ref row, state); 233 double y = Math.Round(Evaluate(dataset, ref row, state)); 234 return Math.Pow(x, y); 273 var x = Evaluate(dataset, ref row, state); 274 var y = Evaluate(dataset, ref row, state); 275 return ArithmeticApply(x, y, 276 (s1, s2) => Math.Pow(s1, Math.Round(s2)), 277 (s1, v2) => DoubleVector.Build.Dense(v2.Count, s1).PointwisePower(DoubleVector.Round(v2)), 278 (v1, s2) => v1.PointwisePower(Math.Round(s2)), 279 (v1, v2) => v1.PointwisePower(DoubleVector.Round(v2))); 235 280 } 236 281 case OpCodes.SquareRoot: { 237 return Math.Sqrt(Evaluate(dataset, ref row, state)); 282 var cur = Evaluate(dataset, ref row, state); 283 return FunctionApply(cur, 284 s => Math.Sqrt(s), 285 v => DoubleVector.Sqrt(v)); 238 286 } 239 287 case OpCodes.CubeRoot: { 240 var arg = Evaluate(dataset, ref row, state); 241 return arg < 0 ? -Math.Pow(-arg, 1.0 / 3.0) : Math.Pow(arg, 1.0 / 3.0); 288 var cur = Evaluate(dataset, ref row, state); 289 return FunctionApply(cur, 290 s => s < 0 ? -Math.Pow(-s, 1.0 / 3.0) : Math.Pow(s, 1.0 / 3.0), 291 v => v.Map(s => s < 0 ? -Math.Pow(-s, 1.0 / 3.0) : Math.Pow(s, 1.0 / 3.0))); 242 292 } 243 293 case OpCodes.Root: { 244 double x = Evaluate(dataset, ref row, state); 245 double y = Math.Round(Evaluate(dataset, ref row, state)); 246 return Math.Pow(x, 1 / y); 294 var x = Evaluate(dataset, ref row, state); 295 var y = Evaluate(dataset, ref row, state); 296 return ArithmeticApply(x, y, 297 (s1, s2) => Math.Pow(s1, 1.0 / Math.Round(s2)), 298 (s1, v2) => DoubleVector.Build.Dense(v2.Count, s1).PointwisePower(1.0 / DoubleVector.Round(v2)), 299 (v1, s2) => v1.PointwisePower(1.0 / Math.Round(s2)), 300 (v1, v2) => v1.PointwisePower(1.0 / DoubleVector.Round(v2))); 247 301 } 248 302 case OpCodes.Exp: { 249 return Math.Exp(Evaluate(dataset, ref row, state)); 303 var cur = Evaluate(dataset, ref row, state); 304 return FunctionApply(cur, 305 s => Math.Exp(s), 306 v => DoubleVector.Exp(v)); 250 307 } 251 308 case OpCodes.Log: { 252 return Math.Log(Evaluate(dataset, ref row, state)); 253 } 254 case OpCodes.Gamma: { 255 var x = Evaluate(dataset, ref row, state); 256 if (double.IsNaN(x)) { return double.NaN; } else { return alglib.gammafunction(x); } 257 } 258 case OpCodes.Psi: { 259 var x = Evaluate(dataset, ref row, state); 260 if (double.IsNaN(x)) return double.NaN; 261 else if (x <= 0 && (Math.Floor(x) - x).IsAlmost(0)) return double.NaN; 262 return alglib.psi(x); 263 } 264 case OpCodes.Dawson: { 265 var x = Evaluate(dataset, ref row, state); 266 if (double.IsNaN(x)) { return double.NaN; } 267 return alglib.dawsonintegral(x); 268 } 269 case OpCodes.ExponentialIntegralEi: { 270 var x = Evaluate(dataset, ref row, state); 271 if (double.IsNaN(x)) { return double.NaN; } 272 return alglib.exponentialintegralei(x); 273 } 274 case OpCodes.SineIntegral: { 275 double si, ci; 276 var x = Evaluate(dataset, ref row, state); 277 if (double.IsNaN(x)) return double.NaN; 278 else { 279 alglib.sinecosineintegrals(x, out si, out ci); 280 return si; 281 } 282 } 283 case OpCodes.CosineIntegral: { 284 double si, ci; 285 var x = Evaluate(dataset, ref row, state); 286 if (double.IsNaN(x)) return double.NaN; 287 else { 288 alglib.sinecosineintegrals(x, out si, out ci); 289 return ci; 290 } 291 } 292 case OpCodes.HyperbolicSineIntegral: { 293 double shi, chi; 294 var x = Evaluate(dataset, ref row, state); 295 if (double.IsNaN(x)) return double.NaN; 296 else { 297 alglib.hyperbolicsinecosineintegrals(x, out shi, out chi); 298 return shi; 299 } 300 } 301 case OpCodes.HyperbolicCosineIntegral: { 302 double shi, chi; 303 var x = Evaluate(dataset, ref row, state); 304 if (double.IsNaN(x)) return double.NaN; 305 else { 306 alglib.hyperbolicsinecosineintegrals(x, out shi, out chi); 307 return chi; 308 } 309 } 310 case OpCodes.FresnelCosineIntegral: { 311 double c = 0, s = 0; 312 var x = Evaluate(dataset, ref row, state); 313 if (double.IsNaN(x)) return double.NaN; 314 else { 315 alglib.fresnelintegral(x, ref c, ref s); 316 return c; 317 } 318 } 319 case OpCodes.FresnelSineIntegral: { 320 double c = 0, s = 0; 321 var x = Evaluate(dataset, ref row, state); 322 if (double.IsNaN(x)) return double.NaN; 323 else { 324 alglib.fresnelintegral(x, ref c, ref s); 325 return s; 326 } 327 } 328 case OpCodes.AiryA: { 329 double ai, aip, bi, bip; 330 var x = Evaluate(dataset, ref row, state); 331 if (double.IsNaN(x)) return double.NaN; 332 else { 333 alglib.airy(x, out ai, out aip, out bi, out bip); 334 return ai; 335 } 336 } 337 case OpCodes.AiryB: { 338 double ai, aip, bi, bip; 339 var x = Evaluate(dataset, ref row, state); 340 if (double.IsNaN(x)) return double.NaN; 341 else { 342 alglib.airy(x, out ai, out aip, out bi, out bip); 343 return bi; 344 } 345 } 346 case OpCodes.Norm: { 347 var x = Evaluate(dataset, ref row, state); 348 if (double.IsNaN(x)) return double.NaN; 349 else return alglib.normaldistribution(x); 350 } 351 case OpCodes.Erf: { 352 var x = Evaluate(dataset, ref row, state); 353 if (double.IsNaN(x)) return double.NaN; 354 else return alglib.errorfunction(x); 355 } 356 case OpCodes.Bessel: { 357 var x = Evaluate(dataset, ref row, state); 358 if (double.IsNaN(x)) return double.NaN; 359 else return alglib.besseli0(x); 360 } 361 362 case OpCodes.AnalyticQuotient: { 363 var x1 = Evaluate(dataset, ref row, state); 364 var x2 = Evaluate(dataset, ref row, state); 365 return x1 / Math.Pow(1 + x2 * x2, 0.5); 366 } 367 case OpCodes.IfThenElse: { 368 double condition = Evaluate(dataset, ref row, state); 369 double result; 370 if (condition > 0.0) { 371 result = Evaluate(dataset, ref row, state); state.SkipInstructions(); 372 } else { 373 state.SkipInstructions(); result = Evaluate(dataset, ref row, state); 374 } 375 return result; 376 } 377 case OpCodes.AND: { 378 double result = Evaluate(dataset, ref row, state); 379 for (int i = 1; i < currentInstr.nArguments; i++) { 380 if (result > 0.0) result = Evaluate(dataset, ref row, state); 381 else { 382 state.SkipInstructions(); 383 } 384 } 385 return result > 0.0 ? 1.0 : -1.0; 386 } 387 case OpCodes.OR: { 388 double result = Evaluate(dataset, ref row, state); 389 for (int i = 1; i < currentInstr.nArguments; i++) { 390 if (result <= 0.0) result = Evaluate(dataset, ref row, state); 391 else { 392 state.SkipInstructions(); 393 } 394 } 395 return result > 0.0 ? 1.0 : -1.0; 396 } 397 case OpCodes.NOT: { 398 return Evaluate(dataset, ref row, state) > 0.0 ? -1.0 : 1.0; 399 } 400 case OpCodes.XOR: { 401 //mkommend: XOR on multiple inputs is defined as true if the number of positive signals is odd 402 // this is equal to a consecutive execution of binary XOR operations. 403 int positiveSignals = 0; 404 for (int i = 0; i < currentInstr.nArguments; i++) { 405 if (Evaluate(dataset, ref row, state) > 0.0) { positiveSignals++; } 406 } 407 return positiveSignals % 2 != 0 ? 1.0 : -1.0; 408 } 409 case OpCodes.GT: { 410 double x = Evaluate(dataset, ref row, state); 411 double y = Evaluate(dataset, ref row, state); 412 if (x > y) { return 1.0; } else { return -1.0; } 413 } 414 case OpCodes.LT: { 415 double x = Evaluate(dataset, ref row, state); 416 double y = Evaluate(dataset, ref row, state); 417 if (x < y) { return 1.0; } else { return -1.0; } 418 } 419 case OpCodes.TimeLag: { 420 var timeLagTreeNode = (LaggedTreeNode)currentInstr.dynamicNode; 421 row += timeLagTreeNode.Lag; 422 double result = Evaluate(dataset, ref row, state); 423 row -= timeLagTreeNode.Lag; 424 return result; 425 } 426 case OpCodes.Integral: { 427 int savedPc = state.ProgramCounter; 428 var timeLagTreeNode = (LaggedTreeNode)currentInstr.dynamicNode; 429 double sum = 0.0; 430 for (int i = 0; i < Math.Abs(timeLagTreeNode.Lag); i++) { 431 row += Math.Sign(timeLagTreeNode.Lag); 432 sum += Evaluate(dataset, ref row, state); 433 state.ProgramCounter = savedPc; 434 } 435 row -= timeLagTreeNode.Lag; 436 sum += Evaluate(dataset, ref row, state); 437 return sum; 438 } 439 440 //mkommend: derivate calculation taken from: 441 //http://www.holoborodko.com/pavel/numerical-methods/numerical-derivative/smooth-low-noise-differentiators/ 442 //one sided smooth differentiatior, N = 4 443 // y' = 1/8h (f_i + 2f_i-1, -2 f_i-3 - f_i-4) 444 case OpCodes.Derivative: { 445 int savedPc = state.ProgramCounter; 446 double f_0 = Evaluate(dataset, ref row, state); row--; 447 state.ProgramCounter = savedPc; 448 double f_1 = Evaluate(dataset, ref row, state); row -= 2; 449 state.ProgramCounter = savedPc; 450 double f_3 = Evaluate(dataset, ref row, state); row--; 451 state.ProgramCounter = savedPc; 452 double f_4 = Evaluate(dataset, ref row, state); 453 row += 4; 454 455 return (f_0 + 2 * f_1 - 2 * f_3 - f_4) / 8; // h = 1 456 } 457 case OpCodes.Call: { 458 // evaluate sub-trees 459 double[] argValues = new double[currentInstr.nArguments]; 460 for (int i = 0; i < currentInstr.nArguments; i++) { 461 argValues[i] = Evaluate(dataset, ref row, state); 462 } 463 // push on argument values on stack 464 state.CreateStackFrame(argValues); 465 466 // save the pc 467 int savedPc = state.ProgramCounter; 468 // set pc to start of function 469 state.ProgramCounter = (ushort)currentInstr.data; 470 // evaluate the function 471 double v = Evaluate(dataset, ref row, state); 472 473 // delete the stack frame 474 state.RemoveStackFrame(); 475 476 // restore the pc => evaluation will continue at point after my subtrees 477 state.ProgramCounter = savedPc; 478 return v; 479 } 480 case OpCodes.Arg: { 481 return state.GetStackFrameValue((ushort)currentInstr.data); 309 var cur = Evaluate(dataset, ref row, state); 310 return FunctionApply(cur, 311 s => Math.Log(s), 312 v => DoubleVector.Log(v)); 482 313 } 483 314 case OpCodes.Variable: { 484 if (row < 0 || row >= dataset.Rows) return double.NaN;315 if (row < 0 || row >= dataset.Rows) return EvaluationResult.NaN; 485 316 var variableTreeNode = (VariableTreeNode)currentInstr.dynamicNode; 486 return ((IList<double>)currentInstr.data)[row] * variableTreeNode.Weight; 317 if (currentInstr.data is IList<double> doubleList) 318 return new EvaluationResult(doubleList[row] * variableTreeNode.Weight); 319 if (currentInstr.data is IList<DoubleVector> doubleVectorList) 320 return new EvaluationResult(doubleVectorList[row] * variableTreeNode.Weight); 321 throw new NotSupportedException($"Unsupported type of variable: {currentInstr.data.GetType().GetPrettyName()}"); 487 322 } 488 323 case OpCodes.BinaryFactorVariable: { 489 if (row < 0 || row >= dataset.Rows) return double.NaN;324 if (row < 0 || row >= dataset.Rows) return EvaluationResult.NaN; 490 325 var factorVarTreeNode = currentInstr.dynamicNode as BinaryFactorVariableTreeNode; 491 return ((IList<string>)currentInstr.data)[row] == factorVarTreeNode.VariableValue ? factorVarTreeNode.Weight : 0;326 return new EvaluationResult(((IList<string>)currentInstr.data)[row] == factorVarTreeNode.VariableValue ? factorVarTreeNode.Weight : 0); 492 327 } 493 328 case OpCodes.FactorVariable: { 494 if (row < 0 || row >= dataset.Rows) return double.NaN;329 if (row < 0 || row >= dataset.Rows) return EvaluationResult.NaN; 495 330 var factorVarTreeNode = currentInstr.dynamicNode as FactorVariableTreeNode; 496 return factorVarTreeNode.GetValue(((IList<string>)currentInstr.data)[row]); 497 } 498 case OpCodes.LagVariable: { 499 var laggedVariableTreeNode = (LaggedVariableTreeNode)currentInstr.dynamicNode; 500 int actualRow = row + laggedVariableTreeNode.Lag; 501 if (actualRow < 0 || actualRow >= dataset.Rows) { return double.NaN; } 502 return ((IList<double>)currentInstr.data)[actualRow] * laggedVariableTreeNode.Weight; 331 return new EvaluationResult(factorVarTreeNode.GetValue(((IList<string>)currentInstr.data)[row])); 503 332 } 504 333 case OpCodes.Constant: { 505 334 var constTreeNode = (ConstantTreeNode)currentInstr.dynamicNode; 506 return constTreeNode.Value; 507 } 508 509 //mkommend: this symbol uses the logistic function f(x) = 1 / (1 + e^(-alpha * x) ) 510 //to determine the relative amounts of the true and false branch see http://en.wikipedia.org/wiki/Logistic_function 511 case OpCodes.VariableCondition: { 512 if (row < 0 || row >= dataset.Rows) return double.NaN; 513 var variableConditionTreeNode = (VariableConditionTreeNode)currentInstr.dynamicNode; 514 if (!variableConditionTreeNode.Symbol.IgnoreSlope) { 515 double variableValue = ((IList<double>)currentInstr.data)[row]; 516 double x = variableValue - variableConditionTreeNode.Threshold; 517 double p = 1 / (1 + Math.Exp(-variableConditionTreeNode.Slope * x)); 518 519 double trueBranch = Evaluate(dataset, ref row, state); 520 double falseBranch = Evaluate(dataset, ref row, state); 521 522 return trueBranch * p + falseBranch * (1 - p); 523 } else { 524 // strict threshold 525 double variableValue = ((IList<double>)currentInstr.data)[row]; 526 if (variableValue <= variableConditionTreeNode.Threshold) { 527 var left = Evaluate(dataset, ref row, state); 528 state.SkipInstructions(); 529 return left; 530 } else { 531 state.SkipInstructions(); 532 return Evaluate(dataset, ref row, state); 533 } 534 } 535 } 536 537 case OpCodes.VectorSum: { 538 DoubleVector v = VectorEvaluate(dataset, ref row, state); 539 return v.Sum(); 540 } 541 case OpCodes.VectorMean: { 542 DoubleVector v = VectorEvaluate(dataset, ref row, state); 543 return v.Mean(); 335 return new EvaluationResult(constTreeNode.Value); 544 336 } 545 337 546 338 default: 547 throw new NotSupportedException(); 548 } 549 } 550 551 public virtual DoubleVector VectorEvaluate(IDataset dataset, ref int row, InterpreterState state) { 552 Instruction currentInstr = state.NextInstruction(); 553 switch (currentInstr.opCode) { 554 case OpCodes.VectorAdd: { 555 DoubleVector s = VectorEvaluate(dataset, ref row, state); 556 for (int i = 1; i < currentInstr.nArguments; i++) { 557 s += VectorEvaluate(dataset, ref row, state); 558 } 559 return s; 560 } 561 case OpCodes.VectorSub: { 562 DoubleVector s = VectorEvaluate(dataset, ref row, state); 563 for (int i = 1; i < currentInstr.nArguments; i++) { 564 s -= VectorEvaluate(dataset, ref row, state); 565 } 566 return s; 567 } 568 case OpCodes.VectorMul: { 569 DoubleVector s = VectorEvaluate(dataset, ref row, state); 570 for (int i = 1; i < currentInstr.nArguments; i++) { 571 s = s.PointwiseMultiply(VectorEvaluate(dataset, ref row, state)); 572 } 573 return s; 574 } 575 case OpCodes.VectorDiv: { 576 DoubleVector s = VectorEvaluate(dataset, ref row, state); 577 for (int i = 1; i < currentInstr.nArguments; i++) { 578 s /= VectorEvaluate(dataset, ref row, state); 579 } 580 return s; 581 } 582 583 case OpCodes.VectorVariable: { 584 if (row < 0 || row >= dataset.Rows) return DoubleVector.Build.Dense(new[] { double.NaN }); 585 var vectorVarTreeNode = currentInstr.dynamicNode as VectorVariableTreeNode; 586 return ((IList<DoubleVector>)currentInstr.data)[row] * vectorVarTreeNode.Weight; 587 } 588 default: 589 throw new NotSupportedException(); 339 throw new NotSupportedException($"Unsupported OpCode: {currentInstr.opCode}"); 590 340 } 591 341 } -
branches/3040_VectorBasedGP/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/SymbolicDataAnalysisProblem.cs
r17448 r17455 241 241 } 242 242 } 243 foreach (var vectorVariableSymbol in grammar.Symbols.OfType<VectorVariable>()) {244 if (!vectorVariableSymbol.Fixed) {245 vectorVariableSymbol.AllVariableNames = problemData.InputVariables.Select(x => x.Value).Where(x => ds.VariableHasType<DoubleVector>(x));246 vectorVariableSymbol.VariableNames = problemData.AllowedInputVariables.Where(x => ds.VariableHasType<DoubleVector>(x));247 }248 }249 243 } 250 244
Note: See TracChangeset
for help on using the changeset viewer.