Free cookie consent management tool by TermsFeed Policy Generator

Changeset 17200 for branches


Ignore:
Timestamp:
08/12/19 10:50:02 (5 years ago)
Author:
gkronber
Message:

#2994 implemented checking of autodiff with numeric differentials and fixed a bug in IntervalEvaluator.

Location:
branches/2994-AutoDiffForIntervals
Files:
2 edited

Legend:

Unmodified
Added
Removed
  • branches/2994-AutoDiffForIntervals/HeuristicLab.Problems.DataAnalysis.Regression.Symbolic.Extensions/ConstrainedNLSInternal.cs

    r17197 r17200  
    11using System;
    22using System.Collections.Generic;
     3using System.Diagnostics;
    34using System.Linq;
    45using System.Runtime.InteropServices;
     
    193194      bestSolution = x;
    194195      bestError = minf;
    195      
     196
    196197      if (res < 0) {
    197198        throw new InvalidOperationException($"NLOpt failed {res} {NLOpt.nlopt_get_errmsg(nlopt)}");
     
    232233        // average
    233234        for (int j = 0; j < grad.Length; j++) { grad[j] /= target.Length; }
     235
     236        #region check gradient
     237        var eval = new VectorEvaluator();
     238        for (int i = 0; i < dim; i++) {
     239          // make two additional evaluations
     240          var xForNumDiff = (double[])curX.Clone();
     241          double delta = Math.Abs(xForNumDiff[i] * 1e-5);
     242          xForNumDiff[i] += delta;
     243          UpdateThetaValues(xForNumDiff);
     244          var evalHigh = eval.Evaluate(preparedTree, problemData.Dataset, trainingRows);
     245          var mseHigh = MSE(target, evalHigh);
     246          xForNumDiff[i] = curX[i] - delta;
     247          UpdateThetaValues(xForNumDiff);
     248          var evalLow = eval.Evaluate(preparedTree, problemData.Dataset, trainingRows);
     249          var mseLow = MSE(target, evalLow);
     250
     251          var numericDiff = (mseHigh - mseLow) / (2 * delta);
     252          var autoDiff = grad[i];
     253          if ((Math.Abs(autoDiff) < 1e-10 && Math.Abs(numericDiff) > 1e-2)
     254            || (Math.Abs(autoDiff) >= 1e-10 && Math.Abs((numericDiff - autoDiff) / numericDiff) > 1e-2))
     255            throw new InvalidProgramException();
     256        }
     257        #endregion
    234258      } else {
    235259        var eval = new VectorEvaluator();
    236260        var prediction = eval.Evaluate(preparedTree, problemData.Dataset, trainingRows);
    237261
    238         // calc sum of squared errors and gradient
     262        // calc sum of squared errors
    239263        sse = 0.0;
    240264        for (int i = 0; i < target.Length; i++) {
     
    249273      if (double.IsNaN(sse)) return double.MaxValue;
    250274      return sse / target.Length;
     275    }
     276
     277    private double MSE(double[] a, double[] b) {
     278      Trace.Assert(a.Length == b.Length);
     279      var sse = 0.0;
     280      for (int i = 0; i < a.Length; i++) sse += (a[i] - b[i]) * (a[i] - b[i]);
     281      return sse / a.Length;
    251282    }
    252283
     
    280311      // we transformed this to a constraint c(x) <= 0, so only the upper bound is relevant for us
    281312      if (grad != null) for (int j = 0; j < grad.Length; j++) { grad[j] = upperGradient[j]; }
     313
     314      #region check gradient
     315      for (int i = 0; i < dim; i++) {
     316        // make two additional evaluations
     317        var xForNumDiff = (double[])curX.Clone();
     318        double delta = Math.Abs(xForNumDiff[i] * 1e-5);
     319        xForNumDiff[i] += delta;
     320        UpdateThetaValues(xForNumDiff);
     321        var evalHigh = intervalEvaluator.Evaluate(constraintData.Tree, dataIntervals, constraintData.ParameterNodes,
     322          out double[] unusedLowerGradientHigh, out double[] unusedUpperGradientHigh);
     323
     324        xForNumDiff[i] = curX[i] - delta;
     325        UpdateThetaValues(xForNumDiff);
     326        var evalLow = intervalEvaluator.Evaluate(constraintData.Tree, dataIntervals, constraintData.ParameterNodes,
     327          out double[] unusedLowerGradientLow, out double[] unusedUpperGradientLow);
     328       
     329        var numericDiff = (evalHigh.UpperBound - evalLow.UpperBound) / (2 * delta);
     330        var autoDiff = grad[i];
     331        // XXX GRADIENT FOR UPPER BOUND FOR FUNCTION IS ZERO FOR THE FIRST SET OF VARIABLES? GRADIENT FOR ADDITION INCORRECT?!
     332        if ((Math.Abs(autoDiff) < 1e-10 && Math.Abs(numericDiff) > 1e-2)
     333          || (Math.Abs(autoDiff) >= 1e-10 && Math.Abs((numericDiff - autoDiff) / numericDiff) > 1e-2))
     334          throw new InvalidProgramException();
     335      }
     336      #endregion
     337
     338
    282339      UpdateConstraintViolations(constraintData.Idx, interval.UpperBound);
    283340      if (double.IsNaN(interval.UpperBound)) return double.MaxValue;
  • branches/2994-AutoDiffForIntervals/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Interpreter/Interpreter.cs

    r17131 r17200  
    788788    [DebuggerBrowsable(DebuggerBrowsableState.Never)]
    789789    public AlgebraicInterval Zero => new AlgebraicInterval(0.0, 0.0);
     790    [DebuggerBrowsable(DebuggerBrowsableState.Never)]
    790791    public AlgebraicInterval One => new AlgebraicInterval(1.0, 1.0);
     792
    791793    public AlgebraicInterval Add(AlgebraicInterval a) {
    792794      low.Add(a.low);
     
    818820    public AlgebraicInterval Div(AlgebraicInterval a) {
    819821      if (a.Contains(0.0)) {
    820         if (a.low.Value.Value.IsAlmost(0.0) && a.high.Value.Value.IsAlmost(0.0)) {
     822        if (a.low.Value.Value == 0 && a.high.Value.Value == 0) {
    821823          low = new MultivariateDual<AlgebraicDouble>(double.NegativeInfinity);
    822824          high = new MultivariateDual<AlgebraicDouble>(double.PositiveInfinity);
    823         } else if (a.low.Value.Value.IsAlmost(0.0))
     825        } else if (a.low.Value.Value == 0)
    824826          Mul(new AlgebraicInterval(a.Clone().high.Inv(), new MultivariateDual<AlgebraicDouble>(double.PositiveInfinity)));
    825827        else
     
    945947      //divide the interval by PI/2 so that the optima lie at x element of N (0,1,2,3,4,...)
    946948      double Pihalf = Math.PI / 2;
    947       var scaled = this.Clone().Scale(1.0 / Pihalf);
     949      var scaled = a.Clone().Scale(1.0 / Pihalf);
    948950      //move to positive scale
    949951      if (scaled.LowerBound.Value.Value < 0) {
     
    965967      }
    966968
    967       low = new MultivariateDual<AlgebraicDouble>(sinValues.Min());
     969      low = new MultivariateDual<AlgebraicDouble>(sinValues.Min()); // TODO, XXX FIX CALCULATION TO SUPPORT GRADIENTS!
    968970      high = new MultivariateDual<AlgebraicDouble>(sinValues.Max());
    969971      return this;
Note: See TracChangeset for help on using the changeset viewer.