Free cookie consent management tool by TermsFeed Policy Generator

Ignore:
Timestamp:
05/20/19 16:33:14 (6 years ago)
Author:
jzenisek
Message:

#2288

  • splitted creation of networks with/without possible cycles
  • included additional check to prevent errors within the impact calculation
Location:
branches/2288_HeuristicLab.VariableInteractionNetworks
Files:
3 edited

Legend:

Unmodified
Added
Removed
  • branches/2288_HeuristicLab.VariableInteractionNetworks/HeuristicLab.VariableInteractionNetworks.Views/3.3/HeuristicLab.VariableInteractionNetworks.Views-3.3.csproj

    r16864 r16966  
    140140      <SpecificVersion>False</SpecificVersion>
    141141      <HintPath>..\..\..\..\trunk\bin\HeuristicLab.Optimizer-3.3.dll</HintPath>
     142      <Private>False</Private>
     143    </Reference>
     144    <Reference Include="HeuristicLab.Persistence-3.3, Version=3.3.0.0, Culture=neutral, PublicKeyToken=ba48961d6f65dcec, processorArchitecture=MSIL">
     145      <SpecificVersion>False</SpecificVersion>
     146      <HintPath>..\..\..\..\trunk\bin\HeuristicLab.Persistence-3.3.dll</HintPath>
     147      <Private>False</Private>
    142148    </Reference>
    143149    <Reference Include="HeuristicLab.PluginInfrastructure-3.3, Version=3.3.0.0, Culture=neutral, PublicKeyToken=ba48961d6f65dcec, processorArchitecture=MSIL">
  • branches/2288_HeuristicLab.VariableInteractionNetworks/HeuristicLab.VariableInteractionNetworks/3.3/ImpactCalculator.cs

    r16962 r16966  
    3434      shuffledRows.ShuffleInPlace(new FastRandom(1234), partition.Start, partition.End);     
    3535
    36       for (int setSize = 1; setSize <= maxInteractions; setSize++) {
     36      for (int setSize = 1; setSize <= maxInteractions && setSize <= variableNames.Count; setSize++) {
    3737        var combinations = HeuristicLab.Common.EnumerableExtensions.Combinations(variableNames, setSize)
    3838                                   .Where(comb => comb.Any(v => v == variableName)); // variable combinations that contain the selected variable
  • branches/2288_HeuristicLab.VariableInteractionNetworks/HeuristicLab.VariableInteractionNetworks/3.3/VariableInteractionNetwork.cs

    r16864 r16966  
    3737  public class VariableInteractionNetwork : DirectedGraph {
    3838
    39     /// <summary>
    40     /// Creates a simple network from a matrix of variable impacts (each row represents a target variable, each column represents an input variable)
    41     /// For each target variable not more than one row can be defined (no junction nodes are build, cf. FromNmseAndVariableImpacts(..) for building more complex networks).
    42     /// The network is acyclic. Values in the diagonal are ignored.
    43     /// The algorithm starts with an empty network and incrementally adds next most relevant input variable for each target variable up to a given threshold
    44     /// In each iteration cycles are broken by removing the weakest link.
    45     /// </summary>
    46     /// <param name="nmse">vector of NMSE values for each target variable</param>
    47     /// <param name="variableImpacts">Variable impacts (smaller is lower impact). Row names and columns names should be set</param>
    48     /// <param name="nmseThreshold">Threshold for NMSE values. Variables with a NMSE value larger than the threshold are considered as independent variables</param>
    49     /// <param name="varImpactThreshold">Threshold for variable impact values. Impacts with a value smaller than the threshold are considered as independent</param>
    50     /// <returns></returns>
    51     public static VariableInteractionNetwork CreateSimpleNetwork(double[] nmse, DoubleMatrix variableImpacts, double nmseThreshold = 0.2, double varImpactThreshold = 0.0) {
     39    public static VariableInteractionNetwork CreateSimpleNetwork(double[] nmse, DoubleMatrix variableImpacts,
     40      double nmseThreshold = 0.2, double varImpactThreshold = 0.0) {
    5241      if (variableImpacts.Rows != variableImpacts.Columns) throw new ArgumentException();
    5342      var network = new VariableInteractionNetwork();
     
    5847      for (int i = 0; i < varNames.Length; i++) {
    5948        var name = varNames[i];
    60         var varVertex = new VariableNetworkNode() {Label = name, Weight = nmse[i]};
     49        var varVertex = new VariableNetworkNode() { Label = name, Weight = nmse[i] };
     50        network.AddVertex(varVertex);
     51        if (nmse[i] < nmseThreshold) {
     52          targets.Add(name, nmse[i]);
     53        }
     54      }
     55
     56      // rel is updated (impacts which are represented in the network are set to zero)
     57      var impacts = variableImpacts.CloneAsMatrix();
     58      // make sure the diagonal is not considered
     59      for (int i = 0; i < impacts.GetLength(0); i++) impacts[i, i] = double.NegativeInfinity;
     60
     61
     62      for (int row = 0; row < impacts.GetLength(0); row++) {
     63        if (!targets.ContainsKey(varNames[row])) continue;
     64
     65        var rowVector = Enumerable.Range(0, impacts.GetLength(0)).Select(col => impacts[row, col]).ToArray();
     66        for (int col = 0; col < rowVector.Length; col++) {
     67          double impact = rowVector[col];
     68          if (impact > varImpactThreshold) {
     69            var srcName = varNames[col];
     70            var dstName = varNames[row];
     71            var srcVertex = network.Vertices.Single(v => v.Label == srcName);
     72            var dstVertex = network.Vertices.Single(v => v.Label == dstName);
     73            var arc = network.AddArc(srcVertex, dstVertex);
     74            arc.Weight = impact;
     75          }
     76        }
     77      }
     78
     79      return network;
     80    }
     81
     82    /// <summary>
     83      /// Creates a simple network from a matrix of variable impacts (each row represents a target variable, each column represents an input variable)
     84      /// For each target variable not more than one row can be defined (no junction nodes are build, cf. FromNmseAndVariableImpacts(..) for building more complex networks).
     85      /// The network is acyclic. Values in the diagonal are ignored.
     86      /// The algorithm starts with an empty network and incrementally adds next most relevant input variable for each target variable up to a given threshold
     87      /// In each iteration cycles are broken by removing the weakest link.
     88      /// </summary>
     89      /// <param name="nmse">vector of NMSE values for each target variable</param>
     90      /// <param name="variableImpacts">Variable impacts (smaller is lower impact). Row names and columns names should be set</param>
     91      /// <param name="nmseThreshold">Threshold for NMSE values. Variables with a NMSE value larger than the threshold are considered as independent variables</param>
     92      /// <param name="varImpactThreshold">Threshold for variable impact values. Impacts with a value smaller than the threshold are considered as independent</param>
     93      /// <returns></returns>
     94    public static VariableInteractionNetwork CreateSimpleAcyclicNetwork(double[] nmse, DoubleMatrix variableImpacts, double nmseThreshold = 0.2, double varImpactThreshold = 0.0) {
     95      if (variableImpacts.Rows != variableImpacts.Columns) throw new ArgumentException();
     96      var network = new VariableInteractionNetwork();
     97      var targets = new Dictionary<string, double>();
     98      string[] varNames = variableImpacts.RowNames.ToArray();
     99      if (nmse.Length != varNames.Length) throw new ArgumentException();
     100
     101      for (int i = 0; i < varNames.Length; i++) {
     102        var name = varNames[i];
     103        var varVertex = new VariableNetworkNode() { Label = name, Weight = nmse[i] };
    61104        network.AddVertex(varVertex);
    62105        if (nmse[i] < nmseThreshold) {
     
    106149        }
    107150      }
    108 
    109151      return newArcs;
    110152    }
     
    351393        if (arc.Target != null) {
    352394          var srcVarName = arc.Source.Label;
    353           var dstVarName = arc.Target.Label;         
     395          var dstVarName = arc.Target.Label;
    354396          w[name2idx[dstVarName], name2idx[srcVarName]] = arc.Weight;
    355397        }
     
    360402
    361403    public string ToGraphVizString() {
    362       Func<string, string> NodeAndEdgeColor = (str) =>
    363       {
     404      Func<string, string> NodeAndEdgeColor = (str) => {
    364405        if (string.IsNullOrEmpty(str)) return "black";
    365406        else if (str.Contains("removed")) return "red";
Note: See TracChangeset for help on using the changeset viewer.