- Timestamp:
- 04/01/19 19:19:14 (6 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
branches/2994-AutoDiffForIntervals/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Interpreter/Interpreter.cs
r16727 r16738 389 389 for (int i = 0; i < paramNodes.Length; ++i) { 390 390 if (paramNodes[i] == null) continue; 391 lowerGradient[i] = l.Gradient.Elements[paramNodes[i]];392 upperGradient[i] = u.Gradient.Elements[paramNodes[i]];391 if (l.Gradient.Elements.TryGetValue(paramNodes[i], out AlgebraicDouble value)) lowerGradient[i] = value; 392 if (u.Gradient.Elements.TryGetValue(paramNodes[i], out value)) upperGradient[i] = value; 393 393 } 394 394 return new Interval(code[0].value.LowerBound.Value.Value, code[0].value.UpperBound.Value.Value); … … 827 827 return this; 828 828 } 829 830 // Exponentiation by a natural power[a, b] k: 831 // 832 // if 0∈[a, b], then 833 // [a, b]^0 = [0, 1] 834 // [a, b]^2n = [0, max(a2n, b2n)] 835 // [a, b]^2n+1 = [a2n+1, b2n+1] 836 // if [a, b]>0, then 837 // [a, b]^0 = [1, 1] 838 // [a, b]^k>0 = [ak, bk] 839 // if [a, b]<0, then 840 // [a, b]^0 = [1, 1] 841 // [a, b]^2n = [b2n, a2n] 842 // [a, b]^2n+1 = [a2n+1, b2n+1] 829 843 830 844 public AlgebraicInterval AssignIntPower(AlgebraicInterval a, int p) {
Note: See TracChangeset
for help on using the changeset viewer.