Changeset 16610 for branches/2925_AutoDiffForDynamicalModels
- Timestamp:
- 02/16/19 06:53:44 (6 years ago)
- Location:
- branches/2925_AutoDiffForDynamicalModels
- Files:
-
- 5 edited
Legend:
- Unmodified
- Added
- Removed
-
branches/2925_AutoDiffForDynamicalModels/AutoDiffForDynamicalModelsTest/AutoDiffForDynamicalModelsTest.csproj
r16601 r16610 76 76 </ItemGroup> 77 77 <ItemGroup> 78 <Compile Include="TestCvodes.cs" />79 78 <Compile Include="Properties\AssemblyInfo.cs" /> 80 79 <Compile Include="TestOdeIdentification.cs" /> -
branches/2925_AutoDiffForDynamicalModels/AutoDiffForDynamicalModelsTest/TestOdeIdentification.cs
r16602 r16610 42 42 Assert.AreEqual(6.8350792038369173E-20, ((DoubleValue)alg.Results["SNMSE"].Value).Value, 1E-8); 43 43 } 44 [TestMethod] 45 public void RunOdeIdentificationMultipleEpisodes() { 46 var alg = new OdeParameterIdentification(); 47 var dynProb = new Problem(); 48 var parser = new HeuristicLab.Problems.Instances.DataAnalysis.TableFileParser(); 49 // var fileName = @"C:\reps\HEAL\EuroCAST - Kronberger\DataGeneration\test.csv"; 50 var fileName = @"C:\reps\HEAL\EuroCAST - Kronberger\DataGeneration\s-system.csv"; 51 parser.Parse(fileName, true); 52 var prov = new HeuristicLab.Problems.Instances.DataAnalysis.RegressionCSVInstanceProvider(); 53 var regressionProblemData = prov.ImportData(fileName); 54 regressionProblemData.TrainingPartition.Start = 0; 55 regressionProblemData.TrainingPartition.End = 61; 56 regressionProblemData.TestPartition.Start = 61; 57 var allowedInputs = new List<string>(); // empty 58 var targets = new List<string>(new[] { "y1", "y2", "y3", "y4", "y5" }); 59 foreach (var checkedItem in regressionProblemData.InputVariables) { 60 regressionProblemData.InputVariables.SetItemCheckedState(checkedItem, allowedInputs.Contains(checkedItem.Value)); 61 } 62 dynProb.Load(regressionProblemData); 63 64 foreach (var checkedItem in dynProb.TargetVariables) { 65 dynProb.TargetVariables.SetItemCheckedState(checkedItem, targets.Contains(checkedItem.Value)); 66 } 67 68 dynProb.TrainingEpisodesParameter.Value.Add(new IntRange(0, 30)); 69 dynProb.TrainingEpisodesParameter.Value.Add(new IntRange(30, 61)); 70 dynProb.NumericIntegrationStepsParameter.Value.Value = 1; 71 72 var rand = new FastRandom(1234); 73 var expressions = new string[] { 74 "1.0*(y3*exp(log(y5)*0.1)) + 1.0*(y1*y1)", 75 "1.0*(y1*y1) + 1.0*(y2*y2)", 76 "1.0*exp(log(y2)*0.1) + 1.0*exp(log(y2)*0.1)*(y3*y3)", 77 "1.0*(y1*y1)*exp(log(y5)*0.1) + 1.0*(y4*y4)", 78 "1.0*(y4*y4)+1.0*(y5*y5)" 79 }; 80 81 alg.CreateSolution(dynProb, expressions, 200, rand); 82 Assert.AreEqual(0.0, ((DoubleValue)alg.Results["SNMSE"].Value).Value, 1E-8); 83 } 44 84 } 45 85 } -
branches/2925_AutoDiffForDynamicalModels/HeuristicLab.Problems.DynamicalSystemsModelling/3.3/HeuristicLab.Problems.DynamicalSystemsModelling-3.3.csproj
r16399 r16610 113 113 </ItemGroup> 114 114 <ItemGroup> 115 <Compile Include="CVODES.cs" />116 115 <Compile Include="OdeParameterIdentification.cs" /> 117 116 <Compile Include="Plugin.cs" /> -
branches/2925_AutoDiffForDynamicalModels/HeuristicLab.Problems.DynamicalSystemsModelling/3.3/Problem.cs
r16604 r16610 278 278 var t = trees[treeIdx]; 279 279 280 // TODO: calculation of differences for multiple episodes 281 var rowsForDataExtraction = episodes.SelectMany(e => Enumerable.Range(e.Start, e.End + 1 - e.Start)).ToArray(); 282 var targetValues = problemData.Dataset.GetDoubleValues(targetVars[treeIdx], rowsForDataExtraction).ToArray(); 283 var targetValuesDiff = targetValues.Skip(1).Zip(targetValues, (t1, t0) => t1 - t0).ToArray();// TODO: smoothing or multi-pole 284 285 var myState = new OptimizationData(new[] { t }, targetVars, problemData, new[] { targetValuesDiff }, episodes.ToArray(), -99, latentVariables, string.Empty); // TODO 280 var targetValuesDiff = new List<double>(); 281 foreach (var ep in episodes) { 282 var episodeRows = Enumerable.Range(ep.Start, ep.Size); 283 var targetValues = problemData.Dataset.GetDoubleValues(targetVars[treeIdx], episodeRows).ToArray(); 284 targetValuesDiff.AddRange(targetValues.Skip(1).Zip(targetValues, (t1, t0) => t1 - t0));// TODO: smoothing or multi-pole); 285 } 286 var adjustedEpisodes = episodes.Select(ep => new IntRange(ep.Start, ep.End - 1)); // because we lose the last row in the differencing step 287 var myState = new OptimizationData(new[] { t }, 288 targetVars, 289 problemData.AllowedInputVariables.Concat(targetVars).ToArray(), 290 problemData, new[] { targetValuesDiff.ToArray() }, adjustedEpisodes.ToArray(), -99, latentVariables, string.Empty); // TODO 286 291 var paramCount = myState.nodeValueLookup.ParameterCount; 287 292 … … 295 300 var upperBounds = Enumerable.Repeat(100.0, p.Length).ToArray(); 296 301 Array.Copy(initialTheta[treeIdx], p, p.Length); 297 alglib.minlmcreatevj(targetValuesDiff. Length, p, out state);302 alglib.minlmcreatevj(targetValuesDiff.Count, p, out state); 298 303 alglib.minlmsetcond(state, 0.0, 0.0, 0.0, maxParameterOptIterations); 299 304 alglib.minlmsetbc(state, lowerBounds, upperBounds); … … 325 330 private static double OptimizeParameters(ISymbolicExpressionTree[] trees, IRegressionProblemData problemData, string[] targetVars, string[] latentVariables, 326 331 IEnumerable<IntRange> episodes, int maxParameterOptIterations, double[] initialTheta, int numericIntegrationSteps, string odeSolver, out double[] optTheta) { 327 var rowsForDataExtraction = episodes.SelectMany(e => Enumerable.Range(e.Start, e. End - e.Start)).ToArray();332 var rowsForDataExtraction = episodes.SelectMany(e => Enumerable.Range(e.Start, e.Size)).ToArray(); 328 333 var targetValues = new double[trees.Length][]; 329 334 for (int treeIdx = 0; treeIdx < trees.Length; treeIdx++) { 330 335 var t = trees[treeIdx]; 331 336 332 // TODO: calculation of differences for multiple episodes333 337 targetValues[treeIdx] = problemData.Dataset.GetDoubleValues(targetVars[treeIdx], rowsForDataExtraction).ToArray(); 334 338 } 335 339 336 var myState = new OptimizationData(trees, targetVars, problemData , targetValues, episodes.ToArray(), numericIntegrationSteps, latentVariables, odeSolver);340 var myState = new OptimizationData(trees, targetVars, problemData.AllowedInputVariables.ToArray(), problemData, targetValues, episodes.ToArray(), numericIntegrationSteps, latentVariables, odeSolver); 337 341 optTheta = initialTheta; 338 342 … … 378 382 var nodeValueLookup = optimizationData.nodeValueLookup; 379 383 var ds = problemData.Dataset; 384 var variables = optimizationData.variables; 385 386 nodeValueLookup.UpdateParamValues(x); 387 380 388 int outputIdx = 0; 381 382 nodeValueLookup.UpdateParamValues(x);383 384 389 for (int trainIdx = 0; trainIdx < rows.Length; trainIdx++) { 385 390 // update variable values 386 foreach (var variable in problemData.AllowedInputVariables.Concat(optimizationData.targetVariables)) {387 nodeValueLookup.SetVariableValue(variable, ds.GetDoubleValue(variable, rows[trainIdx])); 391 foreach (var variable in variables) { 392 nodeValueLookup.SetVariableValue(variable, ds.GetDoubleValue(variable, rows[trainIdx])); // TODO: perf 388 393 } 389 394 // interpret all trees … … 404 409 var ds = problemData.Dataset; 405 410 var rows = optimizationData.rows; 411 var variables = optimizationData.variables; 406 412 407 413 var nodeValueLookup = optimizationData.nodeValueLookup; … … 412 418 for (int trainIdx = 0; trainIdx < rows.Length; trainIdx++) { 413 419 // update variable values 414 foreach (var variable in problemData.AllowedInputVariables.Concat(optimizationData.targetVariables)) {415 nodeValueLookup.SetVariableValue(variable, ds.GetDoubleValue(variable, rows[trainIdx])); 420 foreach (var variable in variables) { 421 nodeValueLookup.SetVariableValue(variable, ds.GetDoubleValue(variable, rows[trainIdx])); // TODO: perf 416 422 } 417 423 … … 511 517 foreach (var episode in TrainingEpisodes) { 512 518 var episodes = new[] { episode }; 513 var optimizationData = new OptimizationData(trees, targetVars, problemData , null, episodes, NumericIntegrationSteps, latentVariables, OdeSolver);519 var optimizationData = new OptimizationData(trees, targetVars, problemData.AllowedInputVariables.ToArray(), problemData, null, episodes, NumericIntegrationSteps, latentVariables, OdeSolver); 514 520 var trainingPrediction = Integrate(optimizationData).ToArray(); 515 521 trainingPredictions.Add(trainingPrediction); … … 543 549 results["Models"].Value = models; 544 550 } else { 545 var optimizationData = new OptimizationData(trees, targetVars, problemData , null, TrainingEpisodes.ToArray(), NumericIntegrationSteps, latentVariables, OdeSolver);551 var optimizationData = new OptimizationData(trees, targetVars, problemData.AllowedInputVariables.ToArray(), problemData, null, TrainingEpisodes.ToArray(), NumericIntegrationSteps, latentVariables, OdeSolver); 546 552 var trainingPrediction = Integrate(optimizationData).ToArray(); 547 553 … … 549 555 var numParams = optimizationData.nodeValueLookup.ParameterCount; 550 556 // for target values and latent variables 551 var trainingRows = TrainingEpisodes.SelectMany(e => Enumerable.Range(e.Start, e.End - e.Start));557 var trainingRows = optimizationData.rows; 552 558 for (int colIdx = 0; colIdx < trees.Length; colIdx++) { 553 559 // is target variable … … 587 593 var targetValues = targetVars.Select(v => problemData.Dataset.GetDoubleValues(v, trainingRows).ToArray()).ToArray(); 588 594 int r = 0; 589 double invN = 1.0 / trainingRows.Count(); 595 590 596 foreach (var y_pred in trainingPrediction) { 591 597 // calculate objective function gradient … … 598 604 var res = (y - y_pred_f); 599 605 var ressq = res * res; 600 f_i += ressq * invN;601 g_i.Add(y_pred[colIdx].Item2.Scale(-2.0 * res * invN));606 f_i += ressq * optimizationData.inverseStandardDeviation[colIdx]; 607 g_i.Add(y_pred[colIdx].Item2.Scale(-2.0 * res * optimizationData.inverseStandardDeviation[colIdx])); 602 608 } 603 609 seRow.Values.Add(f_i); … … 610 616 var testList = new ItemList<DataTable>(); 611 617 var testRows = ProblemData.TestIndices.ToArray(); 612 var testOptimizationData = new OptimizationData(trees, targetVars, problemData , null, new IntRange[] { ProblemData.TestPartition }, NumericIntegrationSteps, latentVariables, OdeSolver);618 var testOptimizationData = new OptimizationData(trees, targetVars, problemData.AllowedInputVariables.ToArray(), problemData, null, new IntRange[] { ProblemData.TestPartition }, NumericIntegrationSteps, latentVariables, OdeSolver); 613 619 var testPrediction = Integrate(testOptimizationData).ToArray(); 614 620 … … 701 707 double[,] jac = new double[n, d]; 702 708 Integrate(optimizationData, fi, jac); 703 for (int i = 0; i < optimizationData.rows.Length;i++) {709 for (int i = 0; i < optimizationData.rows.Length; i++) { 704 710 var res = new Tuple<double, Vector>[nTargets]; 705 for (int j = 0; j<nTargets;j++) {711 for (int j = 0; j < nTargets; j++) { 706 712 res[j] = Tuple.Create(fi[i * nTargets + j], Vector.CreateFromMatrixRow(jac, i * nTargets + j)); 707 713 } … … 721 727 var calculatedVariables = targetVariables.Concat(latentVariables).ToArray(); // TODO: must conincide with the order of trees in the encoding 722 728 729 730 723 731 var nodeValues = optimizationData.nodeValueLookup; 724 732 725 733 // TODO: numericIntegrationSteps is only relevant for the HeuristicLab solver 734 var outputRowIdx = 0; 726 735 var episodeIdx = 0; 727 736 foreach (var episode in optimizationData.episodes) { … … 729 738 730 739 var t0 = rows.First(); 731 var outputRowIdx = 0;732 740 733 741 // initialize values for inputs and targets from dataset … … 736 744 nodeValues.SetVariableValue(varName, y0, Vector.Zero); 737 745 } 738 foreach (var varName in targetVariables) {746 foreach (var varName in targetVariables) { 739 747 var y0 = dataset.GetDoubleValue(varName, t0); 740 748 nodeValues.SetVariableValue(varName, y0, Vector.Zero); … … 1141 1149 return nodeValues.NodeValue(node); 1142 1150 } else if (node.Symbol is Addition) { 1151 Debug.Assert(node.SubtreeCount == 2); 1143 1152 var f = InterpretRec(node.GetSubtree(0), nodeValues); 1144 1153 var g = InterpretRec(node.GetSubtree(1), nodeValues); 1145 1154 return f + g; 1146 1155 } else if (node.Symbol is Multiplication) { 1156 Debug.Assert(node.SubtreeCount == 2); 1147 1157 var f = InterpretRec(node.GetSubtree(0), nodeValues); 1148 1158 var g = InterpretRec(node.GetSubtree(1), nodeValues); 1149 1159 return f * g; 1150 1160 } else if (node.Symbol is Subtraction) { 1161 Debug.Assert(node.SubtreeCount <= 2); 1151 1162 if (node.SubtreeCount == 1) { 1152 1163 var f = InterpretRec(node.GetSubtree(0), nodeValues); … … 1159 1170 } 1160 1171 } else if (node.Symbol is Division) { 1161 var f = InterpretRec(node.GetSubtree(0), nodeValues); 1162 var g = InterpretRec(node.GetSubtree(1), nodeValues); 1163 1164 // protected division 1165 if (g.IsAlmost(0.0)) { 1166 return 0; 1172 Debug.Assert(node.SubtreeCount <= 2); 1173 1174 if (node.SubtreeCount == 1) { 1175 var f = InterpretRec(node.GetSubtree(0), nodeValues); 1176 // protected division 1177 if (f.IsAlmost(0.0)) { 1178 return 0; 1179 } else { 1180 return 1.0 / f; 1181 } 1167 1182 } else { 1168 return f / g; 1183 var f = InterpretRec(node.GetSubtree(0), nodeValues); 1184 var g = InterpretRec(node.GetSubtree(1), nodeValues); 1185 1186 // protected division 1187 if (g.IsAlmost(0.0)) { 1188 return 0; 1189 } else { 1190 return f / g; 1191 } 1169 1192 } 1170 1193 } else if (node.Symbol is Sine) { 1194 Debug.Assert(node.SubtreeCount == 1); 1195 1171 1196 var f = InterpretRec(node.GetSubtree(0), nodeValues); 1172 1197 return Math.Sin(f); 1173 1198 } else if (node.Symbol is Cosine) { 1199 Debug.Assert(node.SubtreeCount == 1); 1200 1174 1201 var f = InterpretRec(node.GetSubtree(0), nodeValues); 1175 1202 return Math.Cos(f); 1176 1203 } else if (node.Symbol is Square) { 1204 Debug.Assert(node.SubtreeCount == 1); 1205 1177 1206 var f = InterpretRec(node.GetSubtree(0), nodeValues); 1178 1207 return f * f; 1208 } else if (node.Symbol is Exponential) { 1209 Debug.Assert(node.SubtreeCount == 1); 1210 1211 var f = InterpretRec(node.GetSubtree(0), nodeValues); 1212 return Math.Exp(f); 1213 } else if (node.Symbol is Logarithm) { 1214 Debug.Assert(node.SubtreeCount == 1); 1215 1216 var f = InterpretRec(node.GetSubtree(0), nodeValues); 1217 return Math.Log(f); 1179 1218 } else throw new NotSupportedException("unsupported symbol"); 1180 1219 } … … 1215 1254 1216 1255 } else if (node.Symbol is Division) { 1217 InterpretRec(node.GetSubtree(0), nodeValues, out f, out df); 1218 InterpretRec(node.GetSubtree(1), nodeValues, out g, out dg); 1219 1220 // protected division 1221 if (g.IsAlmost(0.0)) { 1222 z = 0; 1223 dz = Vector.Zero; 1256 if (node.SubtreeCount == 1) { 1257 InterpretRec(node.GetSubtree(0), nodeValues, out f, out df); 1258 // protected division 1259 if (f.IsAlmost(0.0)) { 1260 z = 0; 1261 dz = Vector.Zero; 1262 } else { 1263 z = 1.0 / f; 1264 dz = df.Scale(z * z); 1265 } 1224 1266 } else { 1225 var inv_g = 1.0 / g; 1226 z = f * inv_g; 1227 1228 dz = dg.Scale(-f * inv_g * inv_g).Add(df.Scale(inv_g)); 1267 InterpretRec(node.GetSubtree(0), nodeValues, out f, out df); 1268 InterpretRec(node.GetSubtree(1), nodeValues, out g, out dg); 1269 1270 // protected division 1271 if (g.IsAlmost(0.0)) { 1272 z = 0; 1273 dz = Vector.Zero; 1274 } else { 1275 var inv_g = 1.0 / g; 1276 z = f * inv_g; 1277 1278 dz = dg.Scale(-f * inv_g * inv_g).Add(df.Scale(inv_g)); 1279 } 1229 1280 } 1230 1281 … … 1242 1293 z = f * f; 1243 1294 dz = df.Scale(2.0 * f); 1295 } else if (node.Symbol is Exponential) { 1296 InterpretRec(node.GetSubtree(0), nodeValues, out f, out df); 1297 z = Math.Exp(f); 1298 dz = df.Scale(Math.Exp(f)); 1299 } else if (node.Symbol is Logarithm) { 1300 InterpretRec(node.GetSubtree(0), nodeValues, out f, out df); 1301 z = Math.Log(f); 1302 dz = df.Scale(1.0 / f); 1244 1303 } else { 1245 1304 throw new NotSupportedException("unsupported symbol"); … … 1518 1577 public readonly NodeValueLookup nodeValueLookup; 1519 1578 public readonly int[] rows; 1520 1521 public OptimizationData(ISymbolicExpressionTree[] trees, string[] targetVars, IRegressionProblemData problemData, 1579 internal readonly string[] variables; 1580 1581 public OptimizationData(ISymbolicExpressionTree[] trees, string[] targetVars, string[] inputVariables, 1582 IRegressionProblemData problemData, 1522 1583 double[][] targetValues, 1523 1584 IntRange[] episodes, 1524 1585 int numericIntegrationSteps, string[] latentVariables, string odeSolver) { 1525 if (episodes.Length > 1) throw new NotSupportedException("multiple episodes are not yet implemented");1526 1586 this.trees = trees; 1527 1587 this.targetVariables = targetVars; 1528 1588 this.problemData = problemData; 1529 1589 this.targetValues = targetValues; 1530 if (targetValues != null) 1531 this.inverseStandardDeviation = targetValues.Select(vec => 1.0 / vec.StandardDeviation()).ToArray(); 1532 else 1533 this.inverseStandardDeviation = Enumerable.Repeat(1.0, trees.Length).ToArray(); 1590 this.variables = inputVariables; 1591 // if (targetValues != null) { 1592 // this.inverseStandardDeviation = new double[targetValues.Length]; 1593 // for (int i = 0; i < targetValues.Length; i++) { 1594 // // calculate variance for each episode separately and calc the average 1595 // var epStartIdx = 0; 1596 // var stdevs = new List<double>(); 1597 // foreach (var ep in episodes) { 1598 // var epValues = targetValues[i].Skip(epStartIdx).Take(ep.Size); 1599 // stdevs.Add(epValues.StandardDeviation()); 1600 // epStartIdx += ep.Size; 1601 // } 1602 // inverseStandardDeviation[i] = 1.0 / stdevs.Average(); 1603 // } 1604 // } else 1605 this.inverseStandardDeviation = Enumerable.Repeat(1.0, trees.Length).ToArray(); 1534 1606 this.episodes = episodes; 1535 1607 this.numericIntegrationSteps = numericIntegrationSteps; … … 1589 1661 } else { 1590 1662 var fakeNode = new VariableTreeNode(new Variable()); 1663 fakeNode.Weight = 1.0; 1664 fakeNode.VariableName = variableName; 1591 1665 var newNodeList = new List<ISymbolicExpressionTreeNode>(); 1592 1666 newNodeList.Add(fakeNode); -
branches/2925_AutoDiffForDynamicalModels/HeuristicLab.Problems.DynamicalSystemsModelling/3.3/Solution.cs
r16603 r16610 91 91 // var random = new FastRandom(12345); 92 92 // snmse = Problem.OptimizeForEpisodes(trees, problemData, targetVars, latentVariables, random, new[] { forecastEpisode }, 100, numericIntegrationSteps, odeSolver); 93 var optimizationData = new Problem.OptimizationData(trees, targetVars, problemData , null, new[] { forecastEpisode }, numericIntegrationSteps, latentVariables, odeSolver);93 var optimizationData = new Problem.OptimizationData(trees, targetVars, problemData.AllowedInputVariables.ToArray(), problemData, null, new[] { forecastEpisode }, numericIntegrationSteps, latentVariables, odeSolver); 94 94 // 95 95 //
Note: See TracChangeset
for help on using the changeset viewer.