- Timestamp:
- 01/28/19 13:41:42 (6 years ago)
- Location:
- trunk
- Files:
-
- 17 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk
- Property svn:mergeinfo changed
/branches/2520_PersistenceReintegration (added) merged: 16451-16454,16462,16465-16468,16470-16472,16474,16476-16477,16479-16487,16529-16530,16539,16551-16555,16558-16559,16562-16564
- Property svn:mergeinfo changed
-
trunk/HeuristicLab.Algorithms.DataAnalysis
- Property svn:mergeinfo changed
/branches/2520_PersistenceReintegration/HeuristicLab.Algorithms.DataAnalysis (added) merged: 16452-16454,16462,16468,16470,16474,16479,16529,16539,16558-16559
- Property svn:mergeinfo changed
-
trunk/HeuristicLab.Algorithms.DataAnalysis/3.4
- Property svn:mergeinfo changed
/branches/2520_PersistenceReintegration/HeuristicLab.Algorithms.DataAnalysis/3.4 (added) merged: 16452-16454,16462,16468,16470,16474,16479,16529,16539,16558-16559
- Property svn:mergeinfo changed
-
trunk/HeuristicLab.Algorithms.DataAnalysis/3.4/GradientBoostedTrees/GradientBoostedTreesAlgorithm.cs
r16071 r16565 1 1 #region License Information 2 2 /* HeuristicLab 3 * Copyright (C) 2002-201 8Heuristic and Evolutionary Algorithms Laboratory (HEAL)3 * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL) 4 4 * and the BEACON Center for the Study of Evolution in Action. 5 5 * … … 29 29 using HeuristicLab.Optimization; 30 30 using HeuristicLab.Parameters; 31 using H euristicLab.Persistence.Default.CompositeSerializers.Storable;31 using HEAL.Attic; 32 32 using HeuristicLab.PluginInfrastructure; 33 33 using HeuristicLab.Problems.DataAnalysis; … … 35 35 namespace HeuristicLab.Algorithms.DataAnalysis { 36 36 [Item("Gradient Boosted Trees (GBT)", "Gradient boosted trees algorithm. Specific implementation of gradient boosting for regression trees. Friedman, J. \"Greedy Function Approximation: A Gradient Boosting Machine\", IMS 1999 Reitz Lecture.")] 37 [Storable Class]37 [StorableType("8CCB55BD-4935-4868-855F-D3E5D55127AA")] 38 38 [Creatable(CreatableAttribute.Categories.DataAnalysisRegression, Priority = 125)] 39 39 public class GradientBoostedTreesAlgorithm : FixedDataAnalysisAlgorithm<IRegressionProblem> { … … 130 130 131 131 [StorableConstructor] 132 protected GradientBoostedTreesAlgorithm( bool deserializing) : base(deserializing) { }132 protected GradientBoostedTreesAlgorithm(StorableConstructorFlag _) : base(_) { } 133 133 134 134 protected GradientBoostedTreesAlgorithm(GradientBoostedTreesAlgorithm original, Cloner cloner) -
trunk/HeuristicLab.Algorithms.DataAnalysis/3.4/GradientBoostedTrees/GradientBoostedTreesAlgorithmStatic.cs
r15583 r16565 1 1 #region License Information 2 2 /* HeuristicLab 3 * Copyright (C) 2002-201 8Heuristic and Evolutionary Algorithms Laboratory (HEAL)3 * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL) 4 4 * and the BEACON Center for the Study of Evolution in Action. 5 5 * -
trunk/HeuristicLab.Algorithms.DataAnalysis/3.4/GradientBoostedTrees/GradientBoostedTreesModel.cs
r15583 r16565 1 1 #region License Information 2 2 /* HeuristicLab 3 * Copyright (C) 2002-201 8Heuristic and Evolutionary Algorithms Laboratory (HEAL)3 * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL) 4 4 * and the BEACON Center for the Study of Evolution in Action. 5 5 * … … 26 26 using HeuristicLab.Common; 27 27 using HeuristicLab.Core; 28 using H euristicLab.Persistence.Default.CompositeSerializers.Storable;28 using HEAL.Attic; 29 29 using HeuristicLab.Problems.DataAnalysis; 30 30 31 31 namespace HeuristicLab.Algorithms.DataAnalysis { 32 [Storable Class]32 [StorableType("4EC1B359-D145-434C-A373-3EDD764D2D63")] 33 33 [Item("Gradient boosted trees model", "")] 34 34 // this is essentially a collection of weighted regression models … … 69 69 70 70 [StorableConstructor] 71 private GradientBoostedTreesModel(bool deserializing) 72 : base(deserializing) { 71 private GradientBoostedTreesModel(StorableConstructorFlag _) : base(_) { 73 72 models = new List<IRegressionModel>(); 74 73 weights = new List<double>(); -
trunk/HeuristicLab.Algorithms.DataAnalysis/3.4/GradientBoostedTrees/GradientBoostedTreesModelSurrogate.cs
r15583 r16565 1 1 #region License Information 2 2 /* HeuristicLab 3 * Copyright (C) 2002-201 8Heuristic and Evolutionary Algorithms Laboratory (HEAL)3 * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL) 4 4 * and the BEACON Center for the Study of Evolution in Action. 5 5 * … … 26 26 using HeuristicLab.Common; 27 27 using HeuristicLab.Core; 28 using H euristicLab.Persistence.Default.CompositeSerializers.Storable;28 using HEAL.Attic; 29 29 using HeuristicLab.Problems.DataAnalysis; 30 30 31 31 namespace HeuristicLab.Algorithms.DataAnalysis { 32 [Storable Class]32 [StorableType("1BF7BEFB-6739-48AA-89BC-B632E72D148C")] 33 33 // this class is used as a surrogate for persistence of an actual GBT model 34 34 // since the actual GBT model would be very large when persisted we only store all necessary information to … … 68 68 69 69 [StorableConstructor] 70 private GradientBoostedTreesModelSurrogate(bool deserializing) 71 : base(deserializing) { 70 private GradientBoostedTreesModelSurrogate(StorableConstructorFlag _) : base(_) { 72 71 actualModel = new Lazy<IGradientBoostedTreesModel>(() => RecalculateModel()); 73 72 } -
trunk/HeuristicLab.Algorithms.DataAnalysis/3.4/GradientBoostedTrees/GradientBoostedTreesSolution.cs
r15583 r16565 1 1 #region License Information 2 2 /* HeuristicLab 3 * Copyright (C) 2002-201 8Heuristic and Evolutionary Algorithms Laboratory (HEAL)3 * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL) 4 4 * 5 5 * This file is part of HeuristicLab. … … 21 21 22 22 using HeuristicLab.Common; 23 using H euristicLab.Persistence.Default.CompositeSerializers.Storable;23 using HEAL.Attic; 24 24 using HeuristicLab.Problems.DataAnalysis; 25 25 26 26 namespace HeuristicLab.Algorithms.DataAnalysis { 27 [Storable Class]27 [StorableType("B05C382A-A637-4CD6-8BCC-E1E92B60F330")] 28 28 public sealed class GradientBoostedTreesSolution : RegressionSolution { 29 29 public new IGradientBoostedTreesModel Model { … … 33 33 34 34 [StorableConstructor] 35 private GradientBoostedTreesSolution(bool deserializing) 36 : base(deserializing) { 35 private GradientBoostedTreesSolution(StorableConstructorFlag _) : base(_) { 37 36 } 38 37 private GradientBoostedTreesSolution(GradientBoostedTreesSolution original, Cloner cloner) -
trunk/HeuristicLab.Algorithms.DataAnalysis/3.4/GradientBoostedTrees/IGradientBoostedTreesModel.cs
r15583 r16565 1 1 #region License Information 2 2 /* HeuristicLab 3 * Copyright (C) 2002-201 8Heuristic and Evolutionary Algorithms Laboratory (HEAL)3 * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL) 4 4 * and the BEACON Center for the Study of Evolution in Action. 5 5 * … … 23 23 using System.Collections.Generic; 24 24 using HeuristicLab.Problems.DataAnalysis; 25 using HEAL.Attic; 25 26 26 27 namespace HeuristicLab.Algorithms.DataAnalysis { 28 [StorableType("e6c22779-7059-416d-8804-0022406b7136")] 27 29 public interface IGradientBoostedTreesModel : IRegressionModel { 28 30 IEnumerable<IRegressionModel> Models { get; } -
trunk/HeuristicLab.Algorithms.DataAnalysis/3.4/GradientBoostedTrees/LossFunctions/AbsoluteErrorLoss.cs
r15583 r16565 1 1 #region License Information 2 2 /* HeuristicLab 3 * Copyright (C) 2002-201 8Heuristic and Evolutionary Algorithms Laboratory (HEAL)3 * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL) 4 4 * and the BEACON Center for the Study of Evolution in Action. 5 5 * … … 25 25 using HeuristicLab.Common; 26 26 using HeuristicLab.Core; 27 using H euristicLab.Persistence.Default.CompositeSerializers.Storable;27 using HEAL.Attic; 28 28 29 29 namespace HeuristicLab.Algorithms.DataAnalysis { 30 30 // loss function for the weighted absolute error 31 [Storable Class]31 [StorableType("C4429BDA-665F-48A2-B18F-EA1569083842")] 32 32 [Item("Absolute error loss", "")] 33 33 public sealed class AbsoluteErrorLoss : Item, ILossFunction { … … 83 83 #region item implementation 84 84 [StorableConstructor] 85 private AbsoluteErrorLoss( bool deserializing) : base(deserializing) { }85 private AbsoluteErrorLoss(StorableConstructorFlag _) : base(_) { } 86 86 87 87 private AbsoluteErrorLoss(AbsoluteErrorLoss original, Cloner cloner) : base(original, cloner) { } -
trunk/HeuristicLab.Algorithms.DataAnalysis/3.4/GradientBoostedTrees/LossFunctions/ILossFunction.cs
r15583 r16565 1 1 #region License Information 2 2 /* HeuristicLab 3 * Copyright (C) 2002-201 8Heuristic and Evolutionary Algorithms Laboratory (HEAL)3 * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL) 4 4 * and the BEACON Center for the Study of Evolution in Action. 5 5 * … … 23 23 using System.Collections.Generic; 24 24 using HeuristicLab.Core; 25 using HEAL.Attic; 25 26 26 27 namespace HeuristicLab.Algorithms.DataAnalysis { 28 [StorableType("588270d5-61ee-4906-b30f-841f64cd6724")] 27 29 // represents an interface for loss functions used by gradient boosting 28 30 // target represents the target vector (original targets from the problem data, never changed) -
trunk/HeuristicLab.Algorithms.DataAnalysis/3.4/GradientBoostedTrees/LossFunctions/LogisticRegressionLoss.cs
r15583 r16565 1 1 #region License Information 2 2 /* HeuristicLab 3 * Copyright (C) 2002-201 8Heuristic and Evolutionary Algorithms Laboratory (HEAL)3 * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL) 4 4 * and the BEACON Center for the Study of Evolution in Action. 5 5 * … … 26 26 using HeuristicLab.Common; 27 27 using HeuristicLab.Core; 28 using H euristicLab.Persistence.Default.CompositeSerializers.Storable;28 using HEAL.Attic; 29 29 30 30 namespace HeuristicLab.Algorithms.DataAnalysis { 31 31 // Greedy Function Approximation: A Gradient Boosting Machine (page 9) 32 [Storable Class]32 [StorableType("E91BD71E-9A1D-4352-BD68-062290F8BE9C")] 33 33 [Item("Logistic regression loss", "")] 34 34 public sealed class LogisticRegressionLoss : Item, ILossFunction { … … 90 90 #region item implementation 91 91 [StorableConstructor] 92 private LogisticRegressionLoss( bool deserializing) : base(deserializing) { }92 private LogisticRegressionLoss(StorableConstructorFlag _) : base(_) { } 93 93 94 94 private LogisticRegressionLoss(LogisticRegressionLoss original, Cloner cloner) : base(original, cloner) { } -
trunk/HeuristicLab.Algorithms.DataAnalysis/3.4/GradientBoostedTrees/LossFunctions/QuantileRegressionLoss.cs
r15583 r16565 1 1 #region License Information 2 2 /* HeuristicLab 3 * Copyright (C) 2002-201 8Heuristic and Evolutionary Algorithms Laboratory (HEAL)3 * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL) 4 4 * and the BEACON Center for the Study of Evolution in Action. 5 5 * … … 27 27 using HeuristicLab.Data; 28 28 using HeuristicLab.Parameters; 29 using H euristicLab.Persistence.Default.CompositeSerializers.Storable;29 using HEAL.Attic; 30 30 31 31 namespace HeuristicLab.Algorithms.DataAnalysis { 32 32 // loss function for quantile regression 33 33 // Generalized Boosted Models - A Guide To The gbm Package, Greg Ridgeway, August 2007, page 11 34 [Storable Class]34 [StorableType("B8EF6C18-C1A8-4B43-8FEA-A6900287ADDD")] 35 35 [Item("QuantileRegressionloss", "Loss function for quantile regression")] 36 36 public sealed class QuantileRegressionLoss : ParameterizedNamedItem, ILossFunction { … … 102 102 #region item implementation 103 103 [StorableConstructor] 104 private QuantileRegressionLoss( bool deserializing) : base(deserializing) { }104 private QuantileRegressionLoss(StorableConstructorFlag _) : base(_) { } 105 105 106 106 private QuantileRegressionLoss(QuantileRegressionLoss original, Cloner cloner) -
trunk/HeuristicLab.Algorithms.DataAnalysis/3.4/GradientBoostedTrees/LossFunctions/RelativeErrorLoss.cs
r15583 r16565 1 1 #region License Information 2 2 /* HeuristicLab 3 * Copyright (C) 2002-201 8Heuristic and Evolutionary Algorithms Laboratory (HEAL)3 * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL) 4 4 * and the BEACON Center for the Study of Evolution in Action. 5 5 * … … 25 25 using HeuristicLab.Common; 26 26 using HeuristicLab.Core; 27 using H euristicLab.Persistence.Default.CompositeSerializers.Storable;27 using HEAL.Attic; 28 28 29 29 namespace HeuristicLab.Algorithms.DataAnalysis { 30 30 // relative error loss is a special case of weighted absolute error loss with weights = (1/target) 31 [Storable Class]31 [StorableType("1334143A-7F77-46C1-8080-0CC4F4DA8995")] 32 32 [Item("Relative error loss", "")] 33 33 public sealed class RelativeErrorLoss : Item, ILossFunction { … … 111 111 #region item implementation 112 112 [StorableConstructor] 113 private RelativeErrorLoss( bool deserializing) : base(deserializing) { }113 private RelativeErrorLoss(StorableConstructorFlag _) : base(_) { } 114 114 115 115 private RelativeErrorLoss(RelativeErrorLoss original, Cloner cloner) : base(original, cloner) { } -
trunk/HeuristicLab.Algorithms.DataAnalysis/3.4/GradientBoostedTrees/LossFunctions/SquaredErrorLoss.cs
r15583 r16565 1 1 #region License Information 2 2 /* HeuristicLab 3 * Copyright (C) 2002-201 8Heuristic and Evolutionary Algorithms Laboratory (HEAL)3 * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL) 4 4 * and the BEACON Center for the Study of Evolution in Action. 5 5 * … … 23 23 using System; 24 24 using System.Collections.Generic; 25 using System.Linq;26 25 using HeuristicLab.Common; 27 26 using HeuristicLab.Core; 28 using H euristicLab.Persistence.Default.CompositeSerializers.Storable;27 using HEAL.Attic; 29 28 30 29 namespace HeuristicLab.Algorithms.DataAnalysis { 31 [Storable Class]30 [StorableType("5D02E552-B96E-4267-858B-22339D8CB6B2")] 32 31 [Item("Squared error loss", "")] 33 32 public sealed class SquaredErrorLoss : Item, ILossFunction { … … 79 78 #region item implementation 80 79 [StorableConstructor] 81 private SquaredErrorLoss( bool deserializing) : base(deserializing) { }80 private SquaredErrorLoss(StorableConstructorFlag _) : base(_) { } 82 81 83 82 private SquaredErrorLoss(SquaredErrorLoss original, Cloner cloner) : base(original, cloner) { } -
trunk/HeuristicLab.Algorithms.DataAnalysis/3.4/GradientBoostedTrees/RegressionTreeBuilder.cs
r15583 r16565 1 1 #region License Information 2 2 /* HeuristicLab 3 * Copyright (C) 2002-201 8Heuristic and Evolutionary Algorithms Laboratory (HEAL)3 * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL) 4 4 * and the BEACON Center for the Study of Evolution in Action. 5 5 * -
trunk/HeuristicLab.Algorithms.DataAnalysis/3.4/GradientBoostedTrees/RegressionTreeModel.cs
r15583 r16565 1 1 #region License Information 2 2 /* HeuristicLab 3 * Copyright (C) 2002-201 8Heuristic and Evolutionary Algorithms Laboratory (HEAL)3 * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL) 4 4 * and the BEACON Center for the Study of Evolution in Action. 5 5 * … … 29 29 using HeuristicLab.Core; 30 30 using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; 31 using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;32 31 using HeuristicLab.Problems.DataAnalysis; 33 32 using HeuristicLab.Problems.DataAnalysis.Symbolic; 34 33 using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression; 34 using HEAL.Attic; 35 35 36 36 namespace HeuristicLab.Algorithms.DataAnalysis { 37 [Storable Class]37 [StorableType("C383410E-8707-486F-98F6-1DFB708B09B5")] 38 38 [Item("RegressionTreeModel", "Represents a decision tree for regression.")] 39 39 public sealed class RegressionTreeModel : RegressionModel { … … 153 153 154 154 [StorableConstructor] 155 private RegressionTreeModel( bool serializing) : base(serializing) { }155 private RegressionTreeModel(StorableConstructorFlag _) : base(_) { } 156 156 // cloning ctor 157 157 private RegressionTreeModel(RegressionTreeModel original, Cloner cloner)
Note: See TracChangeset
for help on using the changeset viewer.