Changeset 16153 for branches/2925_AutoDiffForDynamicalModels
- Timestamp:
- 09/17/18 20:17:05 (6 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
branches/2925_AutoDiffForDynamicalModels/HeuristicLab.Problems.DynamicalSystemsModelling/3.3/Problem.cs
r16152 r16153 36 36 using HeuristicLab.Problems.DataAnalysis.Symbolic; 37 37 using HeuristicLab.Problems.Instances; 38 using Variable = HeuristicLab.Problems.DataAnalysis.Symbolic.Variable; 38 39 39 40 namespace HeuristicLab.Problems.DynamicalSystemsModelling { … … 42 43 43 44 public static Vector operator +(Vector a, Vector b) { 44 if 45 if 45 if(a == Zero) return b; 46 if(b == Zero) return a; 46 47 Debug.Assert(a.arr.Length == b.arr.Length); 47 48 var res = new double[a.arr.Length]; 48 for 49 for(int i = 0; i < res.Length; i++) 49 50 res[i] = a.arr[i] + b.arr[i]; 50 51 return new Vector(res); 51 52 } 52 53 public static Vector operator -(Vector a, Vector b) { 53 if 54 if 54 if(b == Zero) return a; 55 if(a == Zero) return -b; 55 56 Debug.Assert(a.arr.Length == b.arr.Length); 56 57 var res = new double[a.arr.Length]; 57 for 58 for(int i = 0; i < res.Length; i++) 58 59 res[i] = a.arr[i] - b.arr[i]; 59 60 return new Vector(res); 60 61 } 61 62 public static Vector operator -(Vector v) { 62 if 63 for 63 if(v == Zero) return Zero; 64 for(int i = 0; i < v.arr.Length; i++) 64 65 v.arr[i] = -v.arr[i]; 65 66 return v; … … 67 68 68 69 public static Vector operator *(double s, Vector v) { 69 if 70 if 70 if(v == Zero) return Zero; 71 if(s == 0.0) return Zero; 71 72 var res = new double[v.arr.Length]; 72 for 73 for(int i = 0; i < res.Length; i++) 73 74 res[i] = s * v.arr[i]; 74 75 return new Vector(res); … … 78 79 } 79 80 public static Vector operator /(double s, Vector v) { 80 if 81 if 81 if(s == 0.0) return Zero; 82 if(v == Zero) throw new ArgumentException("Division by zero vector"); 82 83 var res = new double[v.arr.Length]; 83 for 84 for(int i = 0; i < res.Length; i++) 84 85 res[i] = 1.0 / v.arr[i]; 85 86 return new Vector(res); … … 115 116 private const string NumberOfLatentVariablesParameterName = "Number of latent variables"; 116 117 private const string NumericIntegrationStepsParameterName = "Steps for numeric integration"; 118 private const string TrainingEpisodesParameterName = "Training episodes"; 117 119 #endregion 118 120 … … 140 142 public IFixedValueParameter<IntValue> NumericIntegrationStepsParameter { 141 143 get { return (IFixedValueParameter<IntValue>)Parameters[NumericIntegrationStepsParameterName]; } 144 } 145 public IValueParameter<ItemList<IntRange>> TrainingEpisodesParameter { 146 get { return (IValueParameter<ItemList<IntRange>>)Parameters[TrainingEpisodesParameterName]; } 142 147 } 143 148 #endregion … … 170 175 get { return NumericIntegrationStepsParameter.Value.Value; } 171 176 } 172 173 #endregion 177 public IEnumerable<IntRange> TrainingEpisodes { 178 get { return TrainingEpisodesParameter.Value; } 179 } 180 181 #endregion 174 182 175 183 public event EventHandler ProblemDataChanged; … … 207 215 Parameters.Add(new FixedValueParameter<IntValue>(NumberOfLatentVariablesParameterName, "Latent variables (unobserved variables) allow us to produce expressions which are integrated up and can be used in other expressions. They are handled similarly to target variables in forward simulation / integration. The difference to target variables is that there are no data to which the calculated values of latent variables are compared. Set to a small value (0 .. 5) as necessary (default = 0)", new IntValue(0))); 208 216 Parameters.Add(new FixedValueParameter<IntValue>(NumericIntegrationStepsParameterName, "Number of steps in the numeric integration that are taken from one row to the next (set to 1 to 100). More steps makes the algorithm slower, less steps worsens the accuracy of the numeric integration scheme.", new IntValue(10))); 217 Parameters.Add(new ValueParameter<ItemList<IntRange>>(TrainingEpisodesParameterName, "A list of ranges that should be used for training, each range represents an independent episode. This overrides the TrainingSet parameter in ProblemData.", new ItemList<IntRange>())); 209 218 210 219 RegisterEventHandlers(); 211 220 InitAllParameters(); 212 221 213 // TODO: do not clear selection of target variables when the input variables are changed 222 // TODO: do not clear selection of target variables when the input variables are changed (keep selected target variables) 214 223 // TODO: UI hangs when selecting / deselecting input variables because the encoding is updated on each item 224 215 225 } 216 226 … … 227 237 // collect values of all target variables 228 238 var colIdx = 0; 229 foreach 239 foreach(var targetVar in targetVars) { 230 240 int rowIdx = 0; 231 foreach 241 foreach(var value in problemData.Dataset.GetDoubleValues(targetVar, rows)) { 232 242 targetValues[rowIdx, colIdx] = value; 233 243 rowIdx++; … … 238 248 var nodeIdx = new Dictionary<ISymbolicExpressionTreeNode, int>(); 239 249 240 foreach 241 foreach 250 foreach(var tree in trees) { 251 foreach(var node in tree.Root.IterateNodesPrefix().Where(n => IsConstantNode(n))) { 242 252 nodeIdx.Add(node, nodeIdx.Count); 243 253 } … … 247 257 248 258 double[] optTheta = new double[0]; 249 if 259 if(theta.Length > 0) { 250 260 alglib.minlbfgsstate state; 251 261 alglib.minlbfgsreport report; … … 253 263 alglib.minlbfgssetcond(state, 0.0, 0.0, 0.0, MaximumParameterOptimizationIterations); 254 264 alglib.minlbfgsoptimize(state, EvaluateObjectiveAndGradient, null, 255 new object[] { trees, targetVars, problemData, nodeIdx, targetValues, rows, NumericIntegrationSteps, latentVariables }); //TODO: create a type265 new object[] { trees, targetVars, problemData, nodeIdx, targetValues, TrainingEpisodes.ToArray(), NumericIntegrationSteps, latentVariables }); //TODO: create a type 256 266 alglib.minlbfgsresults(state, out optTheta, out report); 257 267 … … 282 292 * NFEV countains number of function calculations 283 293 */ 284 if 294 if(report.terminationtype < 0) return double.MaxValue; 285 295 } 286 296 … … 289 299 double optQuality = double.NaN; 290 300 EvaluateObjectiveAndGradient(optTheta, ref optQuality, grad, 291 new object[] { trees, targetVars, problemData, nodeIdx, targetValues, rows, NumericIntegrationSteps, latentVariables });292 if 301 new object[] { trees, targetVars, problemData, nodeIdx, targetValues, TrainingEpisodes.ToArray(), NumericIntegrationSteps, latentVariables }); 302 if(double.IsNaN(optQuality) || double.IsInfinity(optQuality)) return 10E6; // return a large value (TODO: be consistent by using NMSE) 293 303 294 304 individual["OptTheta"] = new DoubleArray(optTheta); // write back optimized parameters so that we can use them in the Analysis method … … 302 312 var nodeIdx = (Dictionary<ISymbolicExpressionTreeNode, int>)((object[])obj)[3]; 303 313 var targetValues = (double[,])((object[])obj)[4]; 304 var rows = (int[])((object[])obj)[5];314 var episodes = (IntRange[])((object[])obj)[5]; 305 315 var numericIntegrationSteps = (int)((object[])obj)[6]; 306 316 var latentVariables = (string[])((object[])obj)[7]; … … 312 322 targetVariables, 313 323 latentVariables, 314 rows,315 nodeIdx, // TODO: is it Ok to use rows here ?324 episodes, 325 nodeIdx, 316 326 x, numericIntegrationSteps).ToArray(); 317 327 318 328 319 329 // for normalized MSE = 1/variance(t) * MSE(t, pred) 320 // TODO: Perf. (by standardization of target variables before evaluation of all trees) 330 // TODO: Perf. (by standardization of target variables before evaluation of all trees) 321 331 var invVar = Enumerable.Range(0, targetVariables.Length) 322 .Select(c => rows.Select(row => targetValues[row, c])) // columsvectors332 .Select(c => Enumerable.Range(0, targetValues.GetLength(0)).Select(row => targetValues[row, c])) // column vectors 323 333 .Select(vec => vec.Variance()) 324 334 .Select(v => 1.0 / v) … … 331 341 var g = Vector.Zero; 332 342 int r = 0; 333 foreach 334 for 343 foreach(var y_pred in predicted) { 344 for(int c = 0; c < y_pred.Length; c++) { 335 345 336 346 var y_pred_f = y_pred[c].Item1; … … 351 361 base.Analyze(individuals, qualities, results, random); 352 362 353 if 363 if(!results.ContainsKey("Prediction (training)")) { 354 364 results.Add(new Result("Prediction (training)", typeof(ReadOnlyItemList<DataTable>))); 355 365 } 356 if 366 if(!results.ContainsKey("Prediction (test)")) { 357 367 results.Add(new Result("Prediction (test)", typeof(ReadOnlyItemList<DataTable>))); 358 368 } 359 if 360 results.Add(new Result("Models", typeof( ReadOnlyItemList<ISymbolicExpressionTree>)));369 if(!results.ContainsKey("Models")) { 370 results.Add(new Result("Models", typeof(VariableCollection))); 361 371 } 362 372 … … 368 378 369 379 370 foreach 371 foreach 380 foreach(var tree in trees) { 381 foreach(var node in tree.Root.IterateNodesPrefix().Where(n => IsConstantNode(n))) { 372 382 nodeIdx.Add(node, nodeIdx.Count); 373 383 } … … 378 388 379 389 var trainingList = new ItemList<DataTable>(); 380 var trainingRows = ProblemData.TrainingIndices.ToArray();381 390 var trainingPrediction = Integrate( 382 391 trees, // we assume trees contain expressions for the change of each target variable over time y'(t) … … 385 394 targetVars, 386 395 latentVariables, 387 trainingRows,396 TrainingEpisodes, 388 397 nodeIdx, 389 398 optTheta, 390 399 NumericIntegrationSteps).ToArray(); 391 400 392 for (int colIdx = 0; colIdx < targetVars.Length; colIdx++) { 401 // only for actual target values 402 var trainingRows = TrainingEpisodes.SelectMany(e => Enumerable.Range(e.Start, e.End - e.Start)); 403 for(int colIdx = 0; colIdx < targetVars.Length; colIdx++) { 393 404 var targetVar = targetVars[colIdx]; 394 405 var trainingDataTable = new DataTable(targetVar + " prediction (training)"); … … 409 420 targetVars, 410 421 latentVariables, 411 testRows,422 new IntRange[] { ProblemData.TestPartition }, 412 423 nodeIdx, 413 424 optTheta, 414 425 NumericIntegrationSteps).ToArray(); 415 426 416 for 427 for(int colIdx = 0; colIdx < targetVars.Length; colIdx++) { 417 428 var targetVar = targetVars[colIdx]; 418 429 var testDataTable = new DataTable(targetVar + " prediction (test)"); … … 429 440 #region simplification of models 430 441 // TODO the dependency of HeuristicLab.Problems.DataAnalysis.Symbolic is not ideal 431 var modelList = new ItemList<ISymbolicExpressionTree>(); 432 foreach (var tree in trees) { 433 var shownTree = (ISymbolicExpressionTree)tree.Clone(); 434 var constantsNodeOrig = tree.IterateNodesPrefix().Where(IsConstantNode); 435 var constantsNodeShown = shownTree.IterateNodesPrefix().Where(IsConstantNode); 436 437 foreach (var n in constantsNodeOrig.Zip(constantsNodeShown, (original, shown) => new { original, shown })) { 438 double constantsVal = optTheta[nodeIdx[n.original]]; 439 440 ConstantTreeNode replacementNode = new ConstantTreeNode(new Constant()) { Value = constantsVal }; 441 442 var parentNode = n.shown.Parent; 443 int replacementIndex = parentNode.IndexOfSubtree(n.shown); 444 parentNode.RemoveSubtree(replacementIndex); 445 parentNode.InsertSubtree(replacementIndex, replacementNode); 446 } 447 448 modelList.Add(shownTree); 449 } 450 results["Models"].Value = modelList.AsReadOnly(); 442 var models = new VariableCollection(); // to store target var names and original version of tree 443 444 foreach(var tup in targetVars.Zip(trees, Tuple.Create)) { 445 var targetVarName = tup.Item1; 446 var tree = tup.Item2; 447 448 // when we reference HeuristicLab.Problems.DataAnalysis.Symbolic we can translate symbols 449 int nextParIdx = 0; 450 var shownTree = new SymbolicExpressionTree(TranslateTreeNode(tree.Root, optTheta, ref nextParIdx)); 451 452 // var shownTree = (SymbolicExpressionTree)tree.Clone(); 453 // var constantsNodeOrig = tree.IterateNodesPrefix().Where(IsConstantNode); 454 // var constantsNodeShown = shownTree.IterateNodesPrefix().Where(IsConstantNode); 455 // 456 // foreach (var n in constantsNodeOrig.Zip(constantsNodeShown, (original, shown) => new { original, shown })) { 457 // double constantsVal = optTheta[nodeIdx[n.original]]; 458 // 459 // ConstantTreeNode replacementNode = new ConstantTreeNode(new Constant()) { Value = constantsVal }; 460 // 461 // var parentNode = n.shown.Parent; 462 // int replacementIndex = parentNode.IndexOfSubtree(n.shown); 463 // parentNode.RemoveSubtree(replacementIndex); 464 // parentNode.InsertSubtree(replacementIndex, replacementNode); 465 // } 466 467 var origTreeVar = new HeuristicLab.Core.Variable(targetVarName + "(original)"); 468 origTreeVar.Value = (ISymbolicExpressionTree)tree.Clone(); 469 models.Add(origTreeVar); 470 var simplifiedTreeVar = new HeuristicLab.Core.Variable(targetVarName + "(simplified)"); 471 simplifiedTreeVar.Value = TreeSimplifier.Simplify(shownTree); 472 models.Add(simplifiedTreeVar); 473 474 } 475 results["Models"].Value = models; 451 476 #endregion 452 477 } 453 478 479 private ISymbolicExpressionTreeNode TranslateTreeNode(ISymbolicExpressionTreeNode n, double[] parameterValues, ref int nextParIdx) { 480 ISymbolicExpressionTreeNode translatedNode = null; 481 if(n.Symbol is StartSymbol) { 482 translatedNode = new StartSymbol().CreateTreeNode(); 483 } else if(n.Symbol is ProgramRootSymbol) { 484 translatedNode = new ProgramRootSymbol().CreateTreeNode(); 485 } else if(n.Symbol.Name == "+") { 486 translatedNode = new Addition().CreateTreeNode(); 487 } else if(n.Symbol.Name == "-") { 488 translatedNode = new Subtraction().CreateTreeNode(); 489 } else if(n.Symbol.Name == "*") { 490 translatedNode = new Multiplication().CreateTreeNode(); 491 } else if(n.Symbol.Name == "%") { 492 translatedNode = new Division().CreateTreeNode(); 493 } else if(IsConstantNode(n)) { 494 var constNode = (ConstantTreeNode)new Constant().CreateTreeNode(); 495 constNode.Value = parameterValues[nextParIdx]; 496 nextParIdx++; 497 translatedNode = constNode; 498 } else { 499 // assume a variable name 500 var varName = n.Symbol.Name; 501 var varNode = (VariableTreeNode)new Variable().CreateTreeNode(); 502 varNode.Weight = 1.0; 503 varNode.VariableName = varName; 504 translatedNode = varNode; 505 } 506 foreach(var child in n.Subtrees) { 507 translatedNode.AddSubtree(TranslateTreeNode(child, parameterValues, ref nextParIdx)); 508 } 509 return translatedNode; 510 } 454 511 455 512 #region interpretation 456 513 private static IEnumerable<Tuple<double, Vector>[]> Integrate( 457 ISymbolicExpressionTree[] trees, IDataset dataset, string[] inputVariables, string[] targetVariables, string[] latentVariables, IEnumerable< int> rows,514 ISymbolicExpressionTree[] trees, IDataset dataset, string[] inputVariables, string[] targetVariables, string[] latentVariables, IEnumerable<IntRange> episodes, 458 515 Dictionary<ISymbolicExpressionTreeNode, int> nodeIdx, double[] parameterValues, int numericIntegrationSteps = 100) { 459 516 460 int NUM_STEPS = numericIntegrationSteps 517 int NUM_STEPS = numericIntegrationSteps; 461 518 double h = 1.0 / NUM_STEPS; 462 519 463 // return first value as stored in the dataset 464 yield return targetVariables 465 .Select(targetVar => Tuple.Create(dataset.GetDoubleValue(targetVar, rows.First()), Vector.Zero)) 466 .ToArray(); 467 468 // integrate forward starting with known values for the target in t0 469 470 var variableValues = new Dictionary<string, Tuple<double, Vector>>(); 471 var t0 = rows.First(); 472 foreach (var varName in inputVariables) { 473 variableValues.Add(varName, Tuple.Create(dataset.GetDoubleValue(varName, t0), Vector.Zero)); 474 } 475 foreach (var varName in targetVariables) { 476 variableValues.Add(varName, Tuple.Create(dataset.GetDoubleValue(varName, t0), Vector.Zero)); 477 } 478 // add value entries for latent variables which are also integrated 479 foreach(var latentVar in latentVariables) { 480 variableValues.Add(latentVar, Tuple.Create(0.0, Vector.Zero)); // we don't have observations for latent variables -> assume zero as starting value 481 } 482 var calculatedVariables = targetVariables.Concat(latentVariables); // TODO: must conincide with the order of trees in the encoding 483 484 foreach (var t in rows.Skip(1)) { 485 for (int step = 0; step < NUM_STEPS; step++) { 486 var deltaValues = new Dictionary<string, Tuple<double, Vector>>(); 487 foreach (var tup in trees.Zip(calculatedVariables, Tuple.Create)) { 488 var tree = tup.Item1; 489 var targetVarName = tup.Item2; 490 // skip programRoot and startSymbol 491 var res = InterpretRec(tree.Root.GetSubtree(0).GetSubtree(0), variableValues, nodeIdx, parameterValues); 492 deltaValues.Add(targetVarName, res); 520 foreach(var episode in episodes) { 521 var rows = Enumerable.Range(episode.Start, episode.End - episode.Start); 522 // return first value as stored in the dataset 523 yield return targetVariables 524 .Select(targetVar => Tuple.Create(dataset.GetDoubleValue(targetVar, rows.First()), Vector.Zero)) 525 .ToArray(); 526 527 // integrate forward starting with known values for the target in t0 528 529 var variableValues = new Dictionary<string, Tuple<double, Vector>>(); 530 var t0 = rows.First(); 531 foreach(var varName in inputVariables) { 532 variableValues.Add(varName, Tuple.Create(dataset.GetDoubleValue(varName, t0), Vector.Zero)); 533 } 534 foreach(var varName in targetVariables) { 535 variableValues.Add(varName, Tuple.Create(dataset.GetDoubleValue(varName, t0), Vector.Zero)); 536 } 537 // add value entries for latent variables which are also integrated 538 foreach(var latentVar in latentVariables) { 539 variableValues.Add(latentVar, Tuple.Create(0.0, Vector.Zero)); // we don't have observations for latent variables -> assume zero as starting value 540 } 541 var calculatedVariables = targetVariables.Concat(latentVariables); // TODO: must conincide with the order of trees in the encoding 542 543 foreach(var t in rows.Skip(1)) { 544 for(int step = 0; step < NUM_STEPS; step++) { 545 var deltaValues = new Dictionary<string, Tuple<double, Vector>>(); 546 foreach(var tup in trees.Zip(calculatedVariables, Tuple.Create)) { 547 var tree = tup.Item1; 548 var targetVarName = tup.Item2; 549 // skip programRoot and startSymbol 550 var res = InterpretRec(tree.Root.GetSubtree(0).GetSubtree(0), variableValues, nodeIdx, parameterValues); 551 deltaValues.Add(targetVarName, res); 552 } 553 554 // update variableValues for next step 555 foreach(var kvp in deltaValues) { 556 var oldVal = variableValues[kvp.Key]; 557 variableValues[kvp.Key] = Tuple.Create( 558 oldVal.Item1 + h * kvp.Value.Item1, 559 oldVal.Item2 + h * kvp.Value.Item2 560 ); 561 } 493 562 } 494 563 495 // update variableValues for next step 496 foreach (var kvp in deltaValues) { 497 var oldVal = variableValues[kvp.Key]; 498 variableValues[kvp.Key] = Tuple.Create( 499 oldVal.Item1 + h * kvp.Value.Item1, 500 oldVal.Item2 + h * kvp.Value.Item2 501 ); 564 // only return the target variables for calculation of errors 565 yield return targetVariables 566 .Select(targetVar => variableValues[targetVar]) 567 .ToArray(); 568 569 // update for next time step 570 foreach(var varName in inputVariables) { 571 variableValues[varName] = Tuple.Create(dataset.GetDoubleValue(varName, t), Vector.Zero); 502 572 } 503 }504 505 // only return the target variables for calculation of errors506 yield return targetVariables507 .Select(targetVar => variableValues[targetVar])508 .ToArray();509 510 // update for next time step511 foreach (var varName in inputVariables) {512 variableValues[varName] = Tuple.Create(dataset.GetDoubleValue(varName, t), Vector.Zero);513 573 } 514 574 } … … 522 582 ) { 523 583 524 switch 584 switch(node.Symbol.Name) { 525 585 case "+": { 526 586 var l = InterpretRec(node.GetSubtree(0), variableValues, nodeIdx, parameterValues); // TODO capture all parameters into a state type for interpretation … … 547 607 548 608 // protected division 549 if 609 if(r.Item1.IsAlmost(0.0)) { 550 610 return Tuple.Create(0.0, Vector.Zero); 551 611 } else { … … 558 618 default: { 559 619 // distinguish other cases 560 if 620 if(IsConstantNode(node)) { 561 621 var vArr = new double[parameterValues.Length]; // backing array for vector 562 622 vArr[nodeIdx[node]] = 1.0; … … 590 650 private void RegisterEventHandlers() { 591 651 ProblemDataParameter.ValueChanged += ProblemDataParameter_ValueChanged; 592 if 652 if(ProblemDataParameter.Value != null) ProblemDataParameter.Value.Changed += ProblemData_Changed; 593 653 594 654 TargetVariablesParameter.ValueChanged += TargetVariablesParameter_ValueChanged; 595 if 655 if(TargetVariablesParameter.Value != null) TargetVariablesParameter.Value.CheckedItemsChanged += CheckedTargetVariablesChanged; 596 656 597 657 FunctionSetParameter.ValueChanged += FunctionSetParameter_ValueChanged; 598 if 658 if(FunctionSetParameter.Value != null) FunctionSetParameter.Value.CheckedItemsChanged += CheckedFunctionsChanged; 599 659 600 660 MaximumLengthParameter.Value.ValueChanged += MaximumLengthChanged; … … 641 701 UpdateTargetVariables(); // implicitly updates other dependent parameters 642 702 var handler = ProblemDataChanged; 643 if 703 if(handler != null) handler(this, EventArgs.Empty); 644 704 } 645 705 … … 674 734 var newVariablesList = new CheckedItemCollection<StringValue>(ProblemData.Dataset.VariableNames.Select(str => new StringValue(str).AsReadOnly()).ToArray()).AsReadOnly(); 675 735 var matchingItems = newVariablesList.Where(item => currentlySelectedVariables.Contains(item.Value)).ToArray(); 676 foreach 736 foreach(var matchingItem in matchingItems) { 677 737 newVariablesList.SetItemCheckedState(matchingItem, true); 678 738 } … … 683 743 var encoding = new MultiEncoding(); 684 744 var g = CreateGrammar(); 685 foreach 745 foreach(var targetVar in TargetVariables.CheckedItems) { 686 746 encoding = encoding.Add(new SymbolicExpressionTreeEncoding(targetVar + "_tree", g, MaximumLength, MaximumLength)); // only limit by length 687 747 } 688 for 748 for(int i = 1; i <= NumberOfLatentVariables; i++) { 689 749 encoding = encoding.Add(new SymbolicExpressionTreeEncoding("λ" + i + "_tree", g, MaximumLength, MaximumLength)); 690 750 } … … 704 764 //}, 1, 1); 705 765 706 foreach 766 foreach(var variableName in ProblemData.AllowedInputVariables.Union(TargetVariables.CheckedItems.Select(i => i.Value))) 707 767 g.AddTerminalSymbol(variableName); 708 768 … … 710 770 // we generate multiple symbols to balance the probability for selecting a numeric parameter in the generation of random trees 711 771 var numericConstantsFactor = 2.0; 712 for 772 for(int i = 0; i < numericConstantsFactor * (ProblemData.AllowedInputVariables.Count() + TargetVariables.CheckedItems.Count()); i++) { 713 773 g.AddTerminalSymbol("θ" + i); // numeric parameter for which the value is optimized using AutoDiff 714 774 } 715 775 716 776 // generate symbols for latent variables 717 for 777 for(int i = 1; i <= NumberOfLatentVariables; i++) { 718 778 g.AddTerminalSymbol("λ" + i); // numeric parameter for which the value is optimized using AutoDiff 719 779 }
Note: See TracChangeset
for help on using the changeset viewer.