Changeset 16058
- Timestamp:
- 08/07/18 14:28:47 (6 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
branches/2904_CalculateImpacts/HeuristicLab.Tests/HeuristicLab.Problems.DataAnalysis-3.4/VariableImpactCalculationTest.cs
r16023 r16058 2 2 using System.Collections.Generic; 3 3 using System.Linq; 4 using HeuristicLab.Algorithms.ALPS; 5 using HeuristicLab.Algorithms.DataAnalysis; 6 using HeuristicLab.Data; 4 using HeuristicLab.Common; 7 5 using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; 8 6 using HeuristicLab.Problems.DataAnalysis.Symbolic; 9 7 using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression; 10 8 using HeuristicLab.Problems.Instances.DataAnalysis; 11 using HeuristicLab.Selection; 12 using HeuristicLab.Tests; 9 using HeuristicLab.Random; 13 10 using Microsoft.VisualStudio.TestTools.UnitTesting; 14 11 … … 17 14 [TestClass()] 18 15 public class VariableImpactCalculationTest { 19 [TestMethod] 20 [TestCategory("Problems.DataAnalysis")] 21 [TestProperty("Time", "medium")] 22 public void RunAlpsSymRegFactoryVariableMibaC1Test() { 23 var alpsGA = CreateAlpsGaSymRegMibaC1Sample(); 24 alpsGA.Start(); 25 var ers = alpsGA.Results.FirstOrDefault(v => v.Name == "Variable impacts").Value as DoubleMatrix; 26 Assert.IsNotNull(ers); 27 Assert.IsTrue(ers.Rows == 22); 28 List<string> expectedVariableOrder = new List<string> { "Oil", "Grooving", "Material_Cat", "x20", "Material", "x14", "x12", "x3", "x7", "x2", "x16", "x15", "x8", "x10", "x11", "x22", "x4", "x5", "x6", "x9", "x17", "x13" }; 29 List<double> expectedVariableImpacts = new List<double> { 0.206, 0.179, 0.136, 0.099, 0.092, 0.07, 0.048, 0.033, 0.029, 0.026, 0.017, 0.01, 0.007, 0.007, 0.007, 0.006, 0.005, 0.005, 0.005, 0.005, 0.005, 0.003 }; 30 Assert.IsTrue(ers.RowNames.SequenceEqual(expectedVariableOrder)); 31 Assert.IsTrue(ers.SequenceEqual(expectedVariableImpacts)); 32 } 33 34 [TestMethod] 35 [TestCategory("Problems.DataAnalysis")] 36 [TestProperty("Time", "medium")] 37 public void RunAlpsSymRegFactoryVariableMibaWear1Test() { 38 var alpsGA = CreateAlpsGaSymRegMibaWear1Sample(); 39 alpsGA.Start(); 40 var ers = alpsGA.Results.FirstOrDefault(v => v.Name == "Variable impacts").Value as DoubleMatrix; 41 Assert.IsNotNull(ers); 42 Assert.IsTrue(ers.Rows == 27); 43 List<string> expectedVariableOrder = new List<string> { "Oil", "Material_Cat", "Material", "Grooving", "x8", "x1", "x14", "x11", "x19", "x10", "x5", "x9", "x17", "x6", "x18", "x7", "Source1", "x2", "x3", "x4", "x16", "x20", "x12", "x13", "x15", "x22", "x21" }; 44 List<double> expectedVariableImpacts = new List<double> { 0.194, 0.184, 0.163, 0.155, 0.022, 0.019, 0.019, 0.018, 0.017, 0.016, 0.015, 0.015, 0.015, 0.014, 0.014, 0.013, 0.012, 0.011, 0.011, 0.011, 0.011, 0.011, 0.01, 0.009, 0.009, 0.008, 0.006 }; 45 Assert.IsTrue(ers.RowNames.SequenceEqual(expectedVariableOrder)); 46 Assert.IsTrue(ers.SequenceEqual(expectedVariableImpacts)); 47 } 48 49 [TestMethod] 50 [TestCategory("Problems.DataAnalysis")] 51 [TestProperty("Time", "medium")] 52 public void RunAlpsSymRegFactoryVariableRealworldTowerTest() { 53 var alpsGA = CreateAlpsGaSymReRealworldTowerSample(); 54 alpsGA.Start(); 55 var ers = alpsGA.Results.FirstOrDefault(v => v.Name == "Variable impacts").Value as DoubleMatrix; 56 Assert.IsNotNull(ers); 57 Assert.IsTrue(ers.Rows == 25); 58 List<string> expectedVariableOrder = new List<string> { "x5", "x4", "x21", "x22", "x13", "x3", "x9", "x19", "x1", "x12", "x8", "x10", "x25", "x11", "x23", "x7", "x24", "x6", "x14", "x15", "x20", "x2", "x16", "x18", "x17" }; 59 List<double> expectedVariableImpacts = new List<double> { 0.057, 0.051, 0.047, 0.047, 0.046, 0.045, 0.044, 0.044, 0.043, 0.043, 0.041, 0.04, 0.04, 0.038, 0.038, 0.037, 0.037, 0.036, 0.036, 0.034, 0.033, 0.031, 0.031, 0.031, 0.03 }; 60 Assert.IsTrue(ers.RowNames.SequenceEqual(expectedVariableOrder)); 61 Assert.IsTrue(ers.SequenceEqual(expectedVariableImpacts)); 62 } 63 64 [TestMethod] 65 [TestCategory("Problems.DataAnalysis")] 66 [TestProperty("Time", "short")] 67 public void RunRandomForestPolyTenTest() { 68 var randomForestRegression = new RandomForestRegression() { 69 M = 0.4, 70 R = 0.3, 71 NumberOfTrees = 50, 72 SetSeedRandomly = false, 73 Seed = 42 74 }; 75 76 var symbRegProblem = new SymbolicRegressionSingleObjectiveProblem(); 77 symbRegProblem.ProblemData = new PolyTen(555000).GenerateRegressionData(); 78 randomForestRegression.Problem = symbRegProblem; 79 randomForestRegression.Start(); 80 81 var rfs = randomForestRegression.Results.FirstOrDefault(v => v.Name == "Random forest regression solution").Value as RandomForestRegressionSolution; 82 Assert.IsNotNull(rfs); 83 var result = new RegressionSolutionVariableImpactsCalculator().Calculate(rfs); 84 85 //Set expected impacts 86 List<Tuple<string, double>> aux = new List<Tuple<string, double>>(); 87 aux.Add(new Tuple<string, double>("X6", 0.14984398650032071)); 88 aux.Add(new Tuple<string, double>("X5", 0.14361275357221248)); 89 aux.Add(new Tuple<string, double>("X1", 0.10607502238071009)); 90 aux.Add(new Tuple<string, double>("X3", 0.1056849194554953)); 91 aux.Add(new Tuple<string, double>("X4", 0.0906750779077492)); 92 aux.Add(new Tuple<string, double>("X2", 0.089817766590950532)); 93 aux.Add(new Tuple<string, double>("X8", 0.042797597332305481)); 94 aux.Add(new Tuple<string, double>("X9", 0.038609311722408446)); 95 aux.Add(new Tuple<string, double>("X10", 0.036202503161574362)); 96 aux.Add(new Tuple<string, double>("X7", 0.033539038256832465)); 97 Assert.IsTrue(result.SequenceEqual(aux)); 98 } 99 100 [TestMethod] 101 [TestCategory("Problems.DataAnalysis")] 102 [TestProperty("Time", "short")] 103 public void RunLinearRegressionBreimanITest() { 104 LinearRegression lr = new LinearRegression(); 105 var symbRegProblem = new SymbolicRegressionSingleObjectiveProblem(); 106 symbRegProblem.ProblemData = new BreimanOne(1234).GenerateRegressionData(); 107 108 lr.Problem = symbRegProblem; 109 lr.Start(); 110 111 var lrs = lr.Results.FirstOrDefault(v => v.Name == "Linear regression solution").Value as SymbolicRegressionSolution; 112 Assert.IsNotNull(lrs); 113 var result = new RegressionSolutionVariableImpactsCalculator().Calculate(lrs); 114 115 //Set expected impacts 116 List<Tuple<string, double>> aux = new List<Tuple<string, double>>(); 117 aux.Add(new Tuple<string, double>("X1", 0.43328518823918716)); 118 aux.Add(new Tuple<string, double>("X2", 0.073284548674773631)); 119 aux.Add(new Tuple<string, double>("X5", 0.070306657566311159)); 120 aux.Add(new Tuple<string, double>("X3", 0.035352205426012917)); 121 aux.Add(new Tuple<string, double>("X6", 0.031710492680145475)); 122 aux.Add(new Tuple<string, double>("X4", 0.0081659530036176653)); 123 aux.Add(new Tuple<string, double>("X7", 0.0070869550705255913)); 124 aux.Add(new Tuple<string, double>("X9", 8.0546619615096127E-05)); 125 aux.Add(new Tuple<string, double>("X8", 6.2072921147349192E-05)); 126 aux.Add(new Tuple<string, double>("X10", 1.9113559758254794E-06)); 127 128 Assert.IsTrue(result.SequenceEqual(aux)); 129 } 130 131 private AlpsGeneticAlgorithm CreateAlpsGaSymRegMibaC1Sample() { 132 AlpsGeneticAlgorithm alpsGa = new AlpsGeneticAlgorithm(); 133 #region Problem Configuration 134 var provider = new MibaFrictionRegressionInstanceProvider(); 135 var instance = provider.GetDataDescriptors().Single(x => x.Name.StartsWith("CF1")); 136 var symbRegProblem = new SymbolicRegressionSingleObjectiveProblem(); 137 symbRegProblem.Load(provider.LoadData(instance)); 138 139 symbRegProblem.MaximumSymbolicExpressionTreeDepth.Value = 35; 140 symbRegProblem.MaximumSymbolicExpressionTreeLength.Value = 35; 141 142 var grammar = (TypeCoherentExpressionGrammar)symbRegProblem.SymbolicExpressionTreeGrammar; 143 grammar.Symbols.OfType<Exponential>().Single().Enabled = false; 144 grammar.Symbols.OfType<Logarithm>().Single().Enabled = false; 145 146 #endregion 147 #region Algorithm Configuration 148 alpsGa.Name = "ALPS Genetic Programming - Symbolic Regression"; 149 alpsGa.Description = "An ALPS-GP to solve a symbolic regression problem"; 150 alpsGa.Problem = symbRegProblem; 151 SamplesUtils.ConfigureAlpsGeneticAlgorithmParameters<GeneralizedRankSelector, SubtreeCrossover, MultiSymbolicExpressionTreeManipulator>(alpsGa, 152 numberOfLayers: 1000, 153 popSize: 100, 154 mutationRate: 0.25, 155 elites: 1, 156 plusSelection: false, 157 agingScheme: AgingScheme.Polynomial, 158 ageGap: 15, 159 ageInheritance: 1.0, 160 maxGens: 10); 161 162 alpsGa.SetSeedRandomly.Value = false; 163 alpsGa.Seed.Value = 1234; 164 #endregion 165 return alpsGa; 166 } 167 private AlpsGeneticAlgorithm CreateAlpsGaSymRegMibaWear1Sample() { 168 AlpsGeneticAlgorithm alpsGa = new AlpsGeneticAlgorithm(); 169 #region Problem Configuration 170 var provider = new MibaFrictionRegressionInstanceProvider(); 171 var instance = provider.GetDataDescriptors().Single(x => x.Name.StartsWith("Wear1")); 172 var symbRegProblem = new SymbolicRegressionSingleObjectiveProblem(); 173 symbRegProblem.Load(provider.LoadData(instance)); 174 175 symbRegProblem.MaximumSymbolicExpressionTreeDepth.Value = 77; 176 symbRegProblem.MaximumSymbolicExpressionTreeLength.Value = 77; 177 178 var grammar = (TypeCoherentExpressionGrammar)symbRegProblem.SymbolicExpressionTreeGrammar; 179 180 #endregion 181 #region Algorithm Configuration 182 alpsGa.Name = "ALPS Genetic Programming - Symbolic Regression"; 183 alpsGa.Description = "An ALPS-GP to solve a symbolic regression problem"; 184 alpsGa.Problem = symbRegProblem; 185 SamplesUtils.ConfigureAlpsGeneticAlgorithmParameters<RandomSelector, SubtreeCrossover, MultiSymbolicExpressionTreeManipulator>(alpsGa, 186 numberOfLayers: 1000, 187 popSize: 200, 188 mutationRate: 0.25, 189 elites: 1, 190 plusSelection: false, 191 agingScheme: AgingScheme.Polynomial, 192 ageGap: 15, 193 ageInheritance: 1.0, 194 maxGens: 10); 195 196 alpsGa.SetSeedRandomly.Value = false; 197 alpsGa.Seed.Value = 11121314; 198 #endregion 199 return alpsGa; 200 } 201 private AlpsGeneticAlgorithm CreateAlpsGaSymReRealworldTowerSample() { 202 AlpsGeneticAlgorithm alpsGa = new AlpsGeneticAlgorithm(); 203 #region Problem Configuration 204 var provider = new RegressionRealWorldInstanceProvider(); 205 var instance = provider.GetDataDescriptors().Single(x => x.Name.StartsWith("Tower")); 206 var symbRegProblem = new SymbolicRegressionSingleObjectiveProblem(); 207 symbRegProblem.Load(provider.LoadData(instance)); 208 209 symbRegProblem.MaximumSymbolicExpressionTreeDepth.Value = 77; 210 symbRegProblem.MaximumSymbolicExpressionTreeLength.Value = 77; 211 212 var grammar = (TypeCoherentExpressionGrammar)symbRegProblem.SymbolicExpressionTreeGrammar; 213 214 #endregion 215 #region Algorithm Configuration 216 alpsGa.Name = "ALPS Genetic Programming - Symbolic Regression"; 217 alpsGa.Description = "An ALPS-GP to solve a symbolic regression problem"; 218 alpsGa.Problem = symbRegProblem; 219 SamplesUtils.ConfigureAlpsGeneticAlgorithmParameters<RandomSelector, SubtreeCrossover, MultiSymbolicExpressionTreeManipulator>(alpsGa, 220 numberOfLayers: 1000, 221 popSize: 200, 222 mutationRate: 0.25, 223 elites: 1, 224 plusSelection: false, 225 agingScheme: AgingScheme.Polynomial, 226 ageGap: 15, 227 ageInheritance: 1.0, 228 maxGens: 10); 229 230 alpsGa.SetSeedRandomly.Value = false; 231 alpsGa.Seed.Value = 1111; 232 #endregion 233 return alpsGa; 234 } 235 236 //TODO: Add Function-Tests once the Branch of #2904 is done 16 private static readonly double epsilon = 0.00001; 17 18 [TestMethod] 19 [TestCategory("Problems.DataAnalysis")] 20 [TestProperty("Time", "short")] 21 public void ConstantModelVariableImpactTest() { 22 IRegressionProblemData problemData = LoadDefaultTowerProblem(); 23 IRegressionModel model = new ConstantModel(5, "y"); 24 IRegressionSolution solution = new RegressionSolution(model, problemData); 25 Dictionary<string, double> expectedImpacts = GetExpectedValuesForConstantModel(); 26 27 CheckDefaultAsserts(solution, expectedImpacts); 28 } 29 30 [TestMethod] 31 [TestCategory("Problems.DataAnalysis")] 32 [TestProperty("Time", "short")] 33 public void LinearRegressionModelVariableImpactTowerTest() { 34 IRegressionProblemData problemData = LoadDefaultTowerProblem(); 35 ISymbolicExpressionTree tree = CreateLRExpressionTree(problemData); 36 IRegressionModel model = new SymbolicRegressionModel(problemData.TargetVariable, tree, new SymbolicDataAnalysisExpressionTreeInterpreter()); 37 IRegressionSolution solution = new RegressionSolution(model, (IRegressionProblemData)problemData.Clone()); 38 Dictionary<string, double> expectedImpacts = GetExpectedValuesForLRTower(); 39 40 CheckDefaultAsserts(solution, expectedImpacts); 41 } 42 43 [TestMethod] 44 [TestCategory("Problems.DataAnalysis")] 45 [TestProperty("Time", "short")] 46 public void LinearRegressionModelVariableImpactMibaTest() { 47 IRegressionProblemData problemData = LoadDefaultMibaProblem(); 48 ISymbolicExpressionTree tree = CreateLRExpressionTree(problemData); 49 IRegressionModel model = new SymbolicRegressionModel(problemData.TargetVariable, tree, new SymbolicDataAnalysisExpressionTreeInterpreter()); 50 IRegressionSolution solution = new RegressionSolution(model, (IRegressionProblemData)problemData.Clone()); 51 Dictionary<string, double> expectedImpacts = GetExpectedValuesForLRMiba(); 52 53 CheckDefaultAsserts(solution, expectedImpacts); 54 } 55 56 [TestMethod] 57 [TestCategory("Problems.DataAnalysis")] 58 [TestProperty("Time", "short")] 59 public void CustomModelVariableImpactTest() { 60 IRegressionProblemData problemData = CreateDefaultProblem(); 61 ISymbolicExpressionTree tree = CreateCustomExpressionTree(); 62 IRegressionModel model = new SymbolicRegressionModel(problemData.TargetVariable, tree, new SymbolicDataAnalysisExpressionTreeInterpreter()); 63 IRegressionSolution solution = new RegressionSolution(model, (IRegressionProblemData)problemData.Clone()); 64 Dictionary<string, double> expectedImpacts = GetExpectedValuesForCustomProblem(); 65 66 CheckDefaultAsserts(solution, expectedImpacts); 67 } 68 69 [TestMethod] 70 [TestCategory("Problems.DataAnalysis")] 71 [TestProperty("Time", "short")] 72 public void CustomModelVariableImpactNoInfluenceTest() { 73 IRegressionProblemData problemData = CreateDefaultProblem(); 74 ISymbolicExpressionTree tree = CreateCustomExpressionTreeNoInfluenceX1(); 75 IRegressionModel model = new SymbolicRegressionModel(problemData.TargetVariable, tree, new SymbolicDataAnalysisExpressionTreeInterpreter()); 76 IRegressionSolution solution = new RegressionSolution(model, (IRegressionProblemData)problemData.Clone()); 77 Dictionary<string, double> expectedImpacts = GetExpectedValuesForCustomProblemNoInfluence(); 78 79 CheckDefaultAsserts(solution, expectedImpacts); 80 } 81 82 #region Load RegressionProblemData 83 private IRegressionProblemData LoadDefaultTowerProblem() { 84 RegressionRealWorldInstanceProvider provider = new RegressionRealWorldInstanceProvider(); 85 var instance = provider.GetDataDescriptors().Where(x => x.Name.Equals("Tower")).Single(); 86 return provider.LoadData(instance); 87 } 88 private IRegressionProblemData LoadDefaultMibaProblem() { 89 MibaFrictionRegressionInstanceProvider provider = new MibaFrictionRegressionInstanceProvider(); 90 var instance = provider.GetDataDescriptors().Where(x => x.Name.Equals("CF1")).Single(); 91 return provider.LoadData(instance); 92 } 93 private IRegressionProblemData CreateDefaultProblem() { 94 List<string> allowedInputVariables = new List<string>() { "x1", "x2", "x3", "x4", "x5" }; 95 string targetVariable = "y"; 96 var variableNames = allowedInputVariables.Union(targetVariable.ToEnumerable()); 97 double[,] variableValues = new double[100, variableNames.Count()]; 98 99 FastRandom random = new FastRandom(12345); 100 for (int i = 0; i < variableValues.GetLength(0); i++) { 101 for (int j = 0; j < variableValues.GetLength(1); j++) { 102 variableValues[i, j] = random.Next(1, 100); 103 } 104 } 105 106 Dataset dataset = new Dataset(variableNames, variableValues); 107 return new RegressionProblemData(dataset, allowedInputVariables, targetVariable); 108 } 109 #endregion 110 111 #region Create SymbolicExpressionTree 112 private ISymbolicExpressionTree CreateLRExpressionTree(IRegressionProblemData problemData) { 113 IEnumerable<int> rows = problemData.TrainingIndices; 114 var doubleVariables = problemData.AllowedInputVariables.Where(problemData.Dataset.VariableHasType<double>); 115 var factorVariableNames = problemData.AllowedInputVariables.Where(problemData.Dataset.VariableHasType<string>); 116 var factorVariables = problemData.Dataset.GetFactorVariableValues(factorVariableNames, rows); 117 double[,] binaryMatrix = problemData.Dataset.ToArray(factorVariables, rows); 118 double[,] doubleVarMatrix = problemData.Dataset.ToArray(doubleVariables.Concat(new string[] { problemData.TargetVariable }), rows); 119 var inputMatrix = binaryMatrix.HorzCat(doubleVarMatrix); 120 121 alglib.linearmodel lm = new alglib.linearmodel(); 122 alglib.lrreport ar = new alglib.lrreport(); 123 int nRows = inputMatrix.GetLength(0); 124 int nFeatures = inputMatrix.GetLength(1) - 1; 125 double[] coefficients = new double[nFeatures + 1]; // last coefficient is for the constant 126 127 int retVal = 1; 128 alglib.lrbuild(inputMatrix, nRows, nFeatures, out retVal, out lm, out ar); 129 if (retVal != 1) throw new ArgumentException("Error in calculation of linear regression solution"); 130 131 alglib.lrunpack(lm, out coefficients, out nFeatures); 132 133 int nFactorCoeff = binaryMatrix.GetLength(1); 134 int nVarCoeff = doubleVariables.Count(); 135 return LinearModelToTreeConverter.CreateTree(factorVariables, coefficients.Take(nFactorCoeff).ToArray(), 136 doubleVariables.ToArray(), coefficients.Skip(nFactorCoeff).Take(nVarCoeff).ToArray(), 137 @const: coefficients[nFeatures]); 138 } 139 private ISymbolicExpressionTree CreateCustomExpressionTree() { 140 return new InfixExpressionParser().Parse("x1*x2 - x2*x2 + x3*x3 + x4*x4 - x5*x5 + 14/12"); 141 } 142 private ISymbolicExpressionTree CreateCustomExpressionTreeNoInfluenceX1() { 143 return new InfixExpressionParser().Parse("x1/x1*x2 - x2*x2 + x3*x3 + x4*x4 - x5*x5 + 14/12"); 144 } 145 #endregion 146 147 #region Get Expected Values 148 private Dictionary<string, double> GetExpectedValuesForConstantModel() { 149 Dictionary<string, double> expectedImpacts = new Dictionary<string, double>(); 150 expectedImpacts.Add("x1", 0); 151 expectedImpacts.Add("x10", 0); 152 expectedImpacts.Add("x11", 0); 153 expectedImpacts.Add("x12", 0); 154 expectedImpacts.Add("x13", 0); 155 expectedImpacts.Add("x14", 0); 156 expectedImpacts.Add("x15", 0); 157 expectedImpacts.Add("x16", 0); 158 expectedImpacts.Add("x17", 0); 159 expectedImpacts.Add("x18", 0); 160 expectedImpacts.Add("x19", 0); 161 expectedImpacts.Add("x2", 0); 162 expectedImpacts.Add("x20", 0); 163 expectedImpacts.Add("x21", 0); 164 expectedImpacts.Add("x22", 0); 165 expectedImpacts.Add("x23", 0); 166 expectedImpacts.Add("x24", 0); 167 expectedImpacts.Add("x25", 0); 168 expectedImpacts.Add("x3", 0); 169 expectedImpacts.Add("x4", 0); 170 expectedImpacts.Add("x5", 0); 171 expectedImpacts.Add("x6", 0); 172 expectedImpacts.Add("x7", 0); 173 expectedImpacts.Add("x8", 0); 174 expectedImpacts.Add("x9", 0); 175 176 return expectedImpacts; 177 } 178 private Dictionary<string, double> GetExpectedValuesForLRTower() { 179 Dictionary<string, double> expectedImpacts = new Dictionary<string, double>(); 180 expectedImpacts.Add("x1", 0.639933657675427); 181 expectedImpacts.Add("x10", 0.0127006885259798); 182 expectedImpacts.Add("x11", 0.648236047877475); 183 expectedImpacts.Add("x12", 0.248350173524562); 184 expectedImpacts.Add("x13", 0.550889987109547); 185 expectedImpacts.Add("x14", 0.0882824237877192); 186 expectedImpacts.Add("x15", 0.0391276799061169); 187 expectedImpacts.Add("x16", 0.743632451088798); 188 expectedImpacts.Add("x17", 0.00254276857715308); 189 expectedImpacts.Add("x18", 0.0021548147614302); 190 expectedImpacts.Add("x19", 0.00513473927463037); 191 expectedImpacts.Add("x2", 0.0107583487931443); 192 expectedImpacts.Add("x20", 0.18085069746933); 193 expectedImpacts.Add("x21", 0.138053600700762); 194 expectedImpacts.Add("x22", 0.000339539790460086); 195 expectedImpacts.Add("x23", 0.362111965467117); 196 expectedImpacts.Add("x24", 0.0320167935572304); 197 expectedImpacts.Add("x25", 0.57460423230969); 198 expectedImpacts.Add("x3", 0.688142635515862); 199 expectedImpacts.Add("x4", 0.000176632348454664); 200 expectedImpacts.Add("x5", 0.0213915503114581); 201 expectedImpacts.Add("x6", 0.807976486909701); 202 expectedImpacts.Add("x7", 0.716217843319252); 203 expectedImpacts.Add("x8", 0.772701841392564); 204 expectedImpacts.Add("x9", 0.178418730050997); 205 206 return expectedImpacts; 207 } 208 private Dictionary<string, double> GetExpectedValuesForLRMiba() { 209 Dictionary<string, double> expectedImpacts = new Dictionary<string, double>(); 210 expectedImpacts.Add("Grooving", 0.0380558091030508); 211 expectedImpacts.Add("Material", 0.02195836766156); 212 expectedImpacts.Add("Material_Cat", 0.000338687689067418); 213 expectedImpacts.Add("Oil", 0.363464994447857); 214 expectedImpacts.Add("x10", 0.0015309669014415); 215 expectedImpacts.Add("x11", -3.60432578908609E-05); 216 expectedImpacts.Add("x12", 0.00118953859087612); 217 expectedImpacts.Add("x13", 0.00164240977191832); 218 expectedImpacts.Add("x14", 0.000688363685380056); 219 expectedImpacts.Add("x15", -4.75067203969948E-05); 220 expectedImpacts.Add("x16", 0.00130388206125076); 221 expectedImpacts.Add("x17", 0.132351838646134); 222 expectedImpacts.Add("x2", -2.47981401556574E-05); 223 expectedImpacts.Add("x20", 0.716541716605016); 224 expectedImpacts.Add("x22", 0.174959377282835); 225 expectedImpacts.Add("x3", -2.65979754026091E-05); 226 expectedImpacts.Add("x4", -1.24764212947603E-05); 227 expectedImpacts.Add("x5", 0.001184959455798); 228 expectedImpacts.Add("x6", 0.000743336665237626); 229 expectedImpacts.Add("x7", 0.00188965927889773); 230 expectedImpacts.Add("x8", 0.00415201581536351); 231 expectedImpacts.Add("x9", 0.00365653880518491); 232 233 return expectedImpacts; 234 } 235 private Dictionary<string, double> GetExpectedValuesForCustomProblem() { 236 Dictionary<string, double> expectedImpacts = new Dictionary<string, double>(); 237 expectedImpacts.Add("x1", -0.000573340275115796); 238 expectedImpacts.Add("x2", 0.000781819784095592); 239 expectedImpacts.Add("x3", -0.000390473234921058); 240 expectedImpacts.Add("x4", -0.00116083274627995); 241 expectedImpacts.Add("x5", -0.00036161186207545); 242 243 return expectedImpacts; 244 } 245 private Dictionary<string, double> GetExpectedValuesForCustomProblemNoInfluence() { 246 Dictionary<string, double> expectedImpacts = new Dictionary<string, double>(); 247 expectedImpacts.Add("x1", 0); 248 expectedImpacts.Add("x2", 0.00263393690342982); 249 expectedImpacts.Add("x3", -0.00053248037514929); 250 expectedImpacts.Add("x4", 0.00450365819257568); 251 expectedImpacts.Add("x5", -0.000550911612888904); 252 253 return expectedImpacts; 254 } 255 #endregion 256 257 private void CheckDefaultAsserts(IRegressionSolution solution, Dictionary<string, double> expectedImpacts) { 258 IRegressionProblemData problemData = solution.ProblemData; 259 IEnumerable<double> estimatedValues = solution.GetEstimatedValues(solution.ProblemData.TrainingIndices); 260 261 var solutionImpacts = RegressionSolutionVariableImpactsCalculator.CalculateImpacts(solution); 262 var modelImpacts = RegressionSolutionVariableImpactsCalculator.CalculateImpacts(solution.Model, problemData, estimatedValues, problemData.TrainingIndices); 263 //Both ways should return equal results 264 Assert.IsTrue(solutionImpacts.SequenceEqual(modelImpacts)); 265 266 //Check if impacts are as expected 267 Assert.AreEqual(modelImpacts.Count(), expectedImpacts.Count); 268 foreach (var entry in modelImpacts.OrderBy(v => v.Item1)) { 269 Assert.IsTrue(Math.Abs(expectedImpacts[entry.Item1] - entry.Item2) < epsilon); 270 } 271 } 237 272 } 238 273 }
Note: See TracChangeset
for help on using the changeset viewer.