- Timestamp:
- 12/18/17 14:38:18 (7 years ago)
- Location:
- branches/CFSAP/HeuristicLab.Problems.Scheduling.CFSAP/3.3
- Files:
-
- 4 edited
- 1 copied
- 1 moved
Legend:
- Unmodified
- Added
- Removed
-
branches/CFSAP/HeuristicLab.Problems.Scheduling.CFSAP/3.3/CFSAP.cs
r15493 r15533 112 112 113 113 public int Evaluate(Permutation order, BinaryVector assignment) { 114 return EvaluateAssign ement(order, assignment, ProcessingTimes, SetupTimes);114 return EvaluateAssignment(order, assignment, ProcessingTimes, SetupTimes); 115 115 } 116 116 … … 147 147 148 148 //Function to evaluate individual with the specified assignment 149 public static int EvaluateAssign ement(Permutation order, BinaryVector assignment, IntMatrix processingTimes, ItemList<IntMatrix> setupTimes) {149 public static int EvaluateAssignment(Permutation order, BinaryVector assignment, IntMatrix processingTimes, ItemList<IntMatrix> setupTimes) { 150 150 if (processingTimes.Rows != 2) throw new ArgumentException("Method can only be used when there are two machines.", "assignment"); 151 151 var N = order.Length; -
branches/CFSAP/HeuristicLab.Problems.Scheduling.CFSAP/3.3/GeneticAlgorithm.cs
r15493 r15533 35 35 36 36 namespace HeuristicLab.Problems.Scheduling.CFSAP { 37 public enum OptimalAssignmentType { None, Polynomial, OneOpt, Both }; 38 37 39 [Item("Genetic Algorithm (CFSAP)", "")] 38 40 [StorableClass] … … 79 81 get { return pauseAfterGenerationParameter; } 80 82 } 83 [Storable] 84 private IFixedValueParameter<EnumValue<OptimalAssignmentType>> optimalAssignmentParameter; 85 public IFixedValueParameter<EnumValue<OptimalAssignmentType>> OptimalAssignmentParameter { 86 get { return optimalAssignmentParameter; } 87 } 81 88 82 89 public int PopulationSize { … … 103 110 get { return pauseAfterGenerationParameter.Value.Value; } 104 111 set { pauseAfterGenerationParameter.Value.Value = value; } 112 } 113 public OptimalAssignmentType OptimalAssignment { 114 get { return optimalAssignmentParameter.Value.Value; } 115 set { optimalAssignmentParameter.Value.Value = value; } 105 116 } 106 117 … … 115 126 maximumEvaluatedSolutionsParameter = cloner.Clone(original.maximumEvaluatedSolutionsParameter); 116 127 pauseAfterGenerationParameter = cloner.Clone(original.pauseAfterGenerationParameter); 128 optimalAssignmentParameter = cloner.Clone(original.optimalAssignmentParameter); 129 117 130 generation = original.generation; 118 131 evaluatedSolutions = original.evaluatedSolutions; 119 132 bestQuality = original.bestQuality; 133 120 134 if (original.population != null) 121 135 population = original.population.Select(cloner.Clone).ToArray(); … … 126 140 } 127 141 public GeneticAlgorithm() { 128 Parameters.Add(populationSizeParameter = new FixedValueParameter<IntValue>("PopulationSize", "The size of the population, each individual of the population is a solution with a permutation and a binary vector.", new IntValue( 100)));142 Parameters.Add(populationSizeParameter = new FixedValueParameter<IntValue>("PopulationSize", "The size of the population, each individual of the population is a solution with a permutation and a binary vector.", new IntValue(500))); 129 143 Parameters.Add(elitesParameter = new FixedValueParameter<IntValue>("Elites", "The number of best individuals from the previous population that will continue to the next generation.", new IntValue(1))); 130 144 Parameters.Add(mutationProbabilityParameter = new FixedValueParameter<PercentValue>("MutationProbability", "The probability that an individual should be mutated after it has been created through crossover.", new PercentValue(0.05))); … … 132 146 Parameters.Add(maximumEvaluatedSolutionsParameter = new FixedValueParameter<IntValue>("MaximumEvaluatedSolutions", "The number of evaluated solutions before the algorithm terminates.", new IntValue(100000000))); 133 147 Parameters.Add(pauseAfterGenerationParameter = new FixedValueParameter<BoolValue>("PauseAfterGeneration", "Whether the algorithm should pause after each generation.", new BoolValue(true))); 148 Parameters.Add(optimalAssignmentParameter = new FixedValueParameter<EnumValue<OptimalAssignmentType>>("OptimalAssignment", "Which optimal assignment strategy should be used.", new EnumValue<OptimalAssignmentType>(OptimalAssignmentType.Polynomial))); 134 149 } 135 150 … … 194 209 Assignment = CrossAssignment(parent1.Assignment, parent2.Assignment) 195 210 }; 211 196 212 var mutProb = random.NextDouble(); 197 213 if (mutProb < MutationProbability) { … … 199 215 MutateAssignment(nextGeneration[p].Assignment); 200 216 } 217 201 218 nextGeneration[p].Quality = Problem.Evaluate(nextGeneration[p].Sequence, nextGeneration[p].Assignment); 202 219 evaluatedSolutions++; 203 220 204 221 if (nextGeneration[p].Quality <= bestQuality) { 205 if (!optimalSequences.Contains(nextGeneration[p].Sequence)) { 206 int cycleTime; 207 var assignment = OptimalAssignment.MakeAssignment(nextGeneration[p].Sequence, Problem.ProcessingTimes, Problem.SetupTimes, out cycleTime); 208 evaluatedSolutions++; 209 nextGeneration[p].Assignment = new BinaryVector(assignment.Select(x => x == 1).ToArray()); 210 nextGeneration[p].Quality = cycleTime; 211 optimalSequences.Add(nextGeneration[p].Sequence); 222 switch (OptimalAssignment) { 223 case OptimalAssignmentType.None: 224 break; 225 case OptimalAssignmentType.Polynomial: 226 OptimalPolynomialAssignment(nextGeneration[p]); 227 break; 228 case OptimalAssignmentType.OneOpt: 229 OneOptAssignment(nextGeneration[p]); 230 break; 231 case OptimalAssignmentType.Both: 232 HybridAssignment(nextGeneration[p]); 233 break; 234 default: 235 throw new InvalidOperationException("Optimal assignment strategy not defined."); 212 236 } 213 if (nextGeneration[p].Quality < bestQuality) { 237 238 if (nextGeneration[p].Quality < bestQuality) { 214 239 bestQuality = nextGeneration[p].Quality; 215 240 ((DoubleValue)Results["BestQuality"].Value).Value = bestQuality; … … 232 257 break; 233 258 } 259 } 260 } 261 262 private void OptimalPolynomialAssignment(EncodedSolution generation) { 263 if (!optimalSequences.Contains(generation.Sequence)) { 264 var assignment = Scheduling.CFSAP.OptimalPolynomialAssignment.MakeAssignment(generation.Sequence, Problem.ProcessingTimes, Problem.SetupTimes, out var cycleTime); 265 evaluatedSolutions++; 266 generation.Assignment = new BinaryVector(assignment.Select(x => x == 1).ToArray()); 267 generation.Quality = cycleTime; 268 optimalSequences.Add(generation.Sequence); 269 } 270 } 271 272 private void OneOptAssignment(EncodedSolution generation) { 273 var assignment = Scheduling.CFSAP.OneOptAssignment.MakeAssignment(generation.Sequence, generation.Assignment, Problem.ProcessingTimes, Problem.SetupTimes, out var cycleTime); 274 evaluatedSolutions++; 275 generation.Assignment = assignment; 276 generation.Quality = cycleTime; 277 } 278 279 private void HybridAssignment(EncodedSolution generation) { 280 var a = random.Next(2); 281 switch (a) { 282 case 0: OptimalPolynomialAssignment(generation); break; 283 case 1: OneOptAssignment(generation); break; 284 default: throw new InvalidOperationException("Assignment not defined."); 234 285 } 235 286 } … … 257 308 258 309 private void MutateSequence(Permutation sequence) { 259 var cx= random.Next(7);260 switch ( cx) {310 var m = random.Next(7); 311 switch (m) { 261 312 case 0: InversionManipulator.Apply(random, sequence); break; 262 313 case 1: InsertionManipulator.Apply(random, sequence); break; … … 266 317 case 5: TranslocationInversionManipulator.Apply(random, sequence); break; 267 318 case 6: ScrambleManipulator.Apply(random, sequence); break; 268 default: throw new InvalidOperationException(" Crossover not defined.");319 default: throw new InvalidOperationException("Manipulator not defined."); 269 320 } 270 321 } … … 284 335 } 285 336 286 private class EncodedSolution : IDeepCloneable, IComparable<EncodedSolution> { 337 [StorableClass] 338 private class EncodedSolution : DeepCloneable, IComparable<EncodedSolution> { 339 [Storable] 287 340 public Permutation Sequence { get; set; } 341 [Storable] 288 342 public BinaryVector Assignment { get; set; } 343 [Storable] 289 344 public double Quality { get; set; } 290 345 291 public IDeepCloneable Clone(Cloner cloner) { 292 return new EncodedSolution() { 293 Sequence = cloner.Clone(this.Sequence), 294 Assignment = cloner.Clone(this.Assignment), 295 Quality = this.Quality 296 }; 297 } 298 299 public object Clone() { 300 return Clone(new Cloner()); 346 [StorableConstructor] 347 private EncodedSolution(bool deserializing) { } 348 349 private EncodedSolution(EncodedSolution original, Cloner cloner) : base(original, cloner) { 350 Sequence = cloner.Clone(original.Sequence); 351 Assignment = cloner.Clone(original.Assignment); 352 Quality = original.Quality; 353 } 354 355 public EncodedSolution() { } 356 357 public override IDeepCloneable Clone(Cloner cloner) { 358 return new EncodedSolution(this, cloner); 301 359 } 302 360 -
branches/CFSAP/HeuristicLab.Problems.Scheduling.CFSAP/3.3/HeuristicLab.Problems.Scheduling.CFSAP-3.3.csproj
r15493 r15533 130 130 <Compile Include="MultiNestCFSAP.cs" /> 131 131 <Compile Include="MultiNestCFSAPSolvingStrategy.cs" /> 132 <Compile Include="OptimalAssignment.cs" /> 132 <Compile Include="OneOptAssignment.cs" /> 133 <Compile Include="OptimalPolynomialAssignment.cs" /> 133 134 <Compile Include="Plugin.cs" /> 134 135 <None Include="Properties\AssemblyInfo.cs.frame" /> -
branches/CFSAP/HeuristicLab.Problems.Scheduling.CFSAP/3.3/MultiNestCFSAPSolvingStrategy.cs
r15472 r15533 12 12 13 13 namespace HeuristicLab.Problems.Scheduling.CFSAP { 14 [Item("MultiNest CFSAP Solver", "Solving strategy that applies an algorithm insta ce to the worst nest.")]14 [Item("MultiNest CFSAP Solver", "Solving strategy that applies an algorithm instance to the worst nest.")] 15 15 [StorableClass] 16 16 [Creatable(CreatableAttribute.Categories.Algorithms)] … … 33 33 } 34 34 35 36 35 public IFixedValueParameter<StringValue> EvaluatedSolutionsNameParameter { 37 36 get { return (IFixedValueParameter<StringValue>)Parameters["EvaluatedSolutionsName"]; } 37 } 38 39 public IValueParameter<BoolValue> RestartParameter { 40 get { return (IValueParameter<BoolValue>)Parameters["Restart"]; } 41 } 42 43 public IValueParameter<IntValue> MinTriesParameter { 44 get { return (IValueParameter<IntValue>)Parameters["Restart.MinTries"]; } 45 } 46 47 public IValueParameter<DoubleValue> LastSuccessPercentageParameter { 48 get { return (IValueParameter<DoubleValue>)Parameters["Restart.LastSuccessPercentage"]; } 38 49 } 39 50 … … 53 64 } 54 65 66 public bool Restart { 67 get => RestartParameter.Value.Value; 68 set => RestartParameter.Value.Value = value; 69 } 70 71 public int MinTries { 72 get => MinTriesParameter.Value.Value; 73 set => MinTriesParameter.Value.Value = value; 74 } 75 76 public double LastSuccessPercentage { 77 get => LastSuccessPercentageParameter.Value.Value; 78 set => LastSuccessPercentageParameter.Value.Value = value; 79 } 80 55 81 [StorableConstructor] 56 82 protected MultiNestCFSAPSolvingStrategy(bool deserializing) : base(deserializing) { } 83 57 84 protected MultiNestCFSAPSolvingStrategy(MultiNestCFSAPSolvingStrategy original, Cloner cloner) 58 85 : base(original, cloner) { … … 67 94 if (original.qualityPerEvaluations != null) 68 95 qualityPerEvaluations = cloner.Clone(original.qualityPerEvaluations); 69 } 96 97 restart = original.restart; 98 minTries = original.minTries; 99 lastSuccessPercentage = original.lastSuccessPercentage; 100 } 101 70 102 public MultiNestCFSAPSolvingStrategy() { 71 103 Parameters.Add(new ValueParameter<IAlgorithm>("Solver", "The actual solver template.") { GetsCollected = false }); 72 104 Parameters.Add(new FixedValueParameter<TimeSpanValue>("MaximumRuntime", "The maximum time that the strategy should run.", new TimeSpanValue(TimeSpan.FromSeconds(60)))); 73 105 Parameters.Add(new FixedValueParameter<StringValue>("EvaluatedSolutionsName", "The name of the result that shows the number of evaluated solutions by the actual solver.", new StringValue("EvaluatedSolutions"))); 74 } 75 106 Parameters.Add(new ValueParameter<BoolValue>("Restart", "Whether the worst algorithm should be restarted, if it doesn't find any better solutions.", new BoolValue(restart))); 107 Parameters.Add(new ValueParameter<IntValue>("Restart.MinTries", "The minimum number of tries before the worst algorithm is restarted.", new IntValue(minTries))); 108 Parameters.Add(new ValueParameter<DoubleValue>("Restart.LastSuccessPercentage", "Only if the last found best solution is older than x percent of the total number of tries, the worst algorithm is restarted.", new DoubleValue(lastSuccessPercentage))); 109 } 110 76 111 public override IDeepCloneable Clone(Cloner cloner) { 77 112 return new MultiNestCFSAPSolvingStrategy(this, cloner); 78 113 } 79 80 114 81 115 [StorableHook(HookType.AfterDeserialization)] … … 83 117 if (!Parameters.ContainsKey("EvaluatedSolutionsName")) 84 118 Parameters.Add(new FixedValueParameter<StringValue>("EvaluatedSolutionsName", "The name of the result that shows the number of evaluated solutions by the actual solver.", new StringValue("EvaluatedSolutions"))); 119 if (!Parameters.ContainsKey("Restart")) 120 Parameters.Add(new ValueParameter<BoolValue>(nameof(Restart), "Whether the worst algorithm should be restarted, if it doesn't find any better solutions.", new BoolValue(restart))); 121 if (!Parameters.ContainsKey("Restart.MinTries")) 122 Parameters.Add(new ValueParameter<IntValue>("Restart.MinTries", "The minimum number of tries before the worst algorithm is restarted.", new IntValue(minTries))); 123 if (!Parameters.ContainsKey("Restart.LastSuccessPercentage")) 124 Parameters.Add(new ValueParameter<DoubleValue>("Restart.LastSuccessPercentage", "Only if the last found best solution is older than x percent of the total number of tries, the worst algorithm is restarted.", new DoubleValue(lastSuccessPercentage))); 85 125 } 86 126 … … 95 135 [Storable] 96 136 private IndexedDataTable<double> qualityPerEvaluations; 137 [Storable] 138 private bool restart = true; 139 [Storable] 140 private int minTries = 10000; 141 [Storable] 142 private double lastSuccessPercentage = 0.1; 97 143 98 144 protected override void OnPrepared() { … … 117 163 cfsap.UpdateEncoding(); 118 164 algorithms.Add(clone); 119 algorithmsResults.Add(new Result( "Nest " + (n + 1), clone.Results));165 algorithmsResults.Add(new Result($"Nest {n + 1}", clone.Results)); 120 166 clone.Start(); 121 167 } … … 133 179 qualityPerEvaluations.Rows.Add(qpeRow); 134 180 double evaluations = GetEvaluatedSolutions(); 135 qpeRow.Values.Add(Tuple.Create( (double)evaluations, (double)min));136 qpeRow.Values.Add(Tuple.Create( (double)evaluations, (double)min));181 qpeRow.Values.Add(Tuple.Create(evaluations, (double)min)); 182 qpeRow.Values.Add(Tuple.Create(evaluations, (double)min)); 137 183 138 184 Results.Add(new Result("Nest with maximum T", new IntValue(worst.Index + 1))); 139 185 Results.Add(new Result("Maximum T", new IntValue(min))); 140 186 Results.Add(new Result("BestQuality", new DoubleValue(min))); 187 Results.Add(new Result("Best Solution Found After Evaluated Solutions", new DoubleValue(evaluations))); 141 188 Results.Add(new Result("Best Solution Found At", new TimeSpanValue(ExecutionTime))); 142 189 Results.Add(new Result("Delta T", new PercentValue((min - Problem.BestKnownQuality) / Problem.BestKnownQuality))); … … 144 191 Results.Add(new Result("QualityPerClock", qualityPerClock)); 145 192 Results.Add(new Result("QualityPerEvaluations", qualityPerEvaluations)); 193 Results.Add(new Result("Tries", new IntValue(nests))); 194 Results.Add(new Result("Nests", new IntValue(nests))); 195 Results.Add(new Result("Jobs", new IntValue(Problem.ProcessingTimes.First().Count() / Problem.SetupTimes.First().Count()))); 146 196 147 197 base.Initialize(cancellationToken); … … 149 199 150 200 private double GetEvaluatedSolutions() { 151 if (algorithmsResults == null) throw new InvalidOperationException("Strategy has not been started yet."); 201 if (algorithmsResults == null) 202 throw new InvalidOperationException("Strategy has not been started yet."); 152 203 return algorithmsResults.Select(x => { 153 IResult res; 154 if (((ResultCollection)x.Value).TryGetValue(EvaluatedSolutionsName, out res)) { 204 if (((ResultCollection)x.Value).TryGetValue(EvaluatedSolutionsName, out var res)) { 155 205 var itm = res.Value; 156 if (itm is IntValue) return ((IntValue)itm).Value; 157 else if (itm is DoubleValue) return ((DoubleValue)itm).Value; 206 if (itm is IntValue) 207 return ((IntValue)itm).Value; 208 else if (itm is DoubleValue) 209 return ((DoubleValue)itm).Value; 158 210 } 159 throw new InvalidOperationException( "No result " + EvaluatedSolutionsName + " in the collection of " + x.Name);211 throw new InvalidOperationException($"No result {EvaluatedSolutionsName} in the collection of {x.Name}"); 160 212 }).Sum(); 161 213 } 162 214 163 215 protected override void Run(CancellationToken cancellationToken) { 216 var evaluationsPrevTries = 0.0; 164 217 var worst = qualities.Select((v, i) => new { Index = i, Quality = v }).MaxItems(x => x.Quality).First(); 165 218 var min = worst.Quality; 166 219 167 while (ExecutionTime < MaximumRuntime) { 168 algorithms[worst.Index].Start(cancellationToken); 169 qualities[worst.Index] = (int)((DoubleValue)algorithms[worst.Index].Results["BestQuality"].Value).Value; 170 worst = qualities.Select((v, i) => new { Index = i, Quality = v }).MaxItems(x => x.Quality).First(); 171 172 var evaluations = GetEvaluatedSolutions(); 173 var time = ExecutionTime.TotalSeconds; 174 var qpcRow = qualityPerClock.Rows.First(); 175 var qpeRow = qualityPerEvaluations.Rows.First(); 176 qpcRow.Values[qpcRow.Values.Count - 1] = Tuple.Create(time, (double)min); 177 qpeRow.Values[qpeRow.Values.Count - 1] = Tuple.Create(evaluations, (double)min); 178 179 if (worst.Quality < min) { 180 min = worst.Quality; 181 ((IntValue)Results["Nest with maximum T"].Value).Value = worst.Index + 1; 182 ((IntValue)Results["Maximum T"].Value).Value = min; 183 ((DoubleValue)Results["BestQuality"].Value).Value = min; 184 ((TimeSpanValue)Results["Best Solution Found At"].Value).Value = TimeSpan.FromSeconds(time); 185 ((PercentValue)Results["Delta T"].Value).Value = (min - Problem.BestKnownQuality) / Problem.BestKnownQuality; 186 qpcRow.Values.Add(Tuple.Create(time, (double)min)); 187 qpeRow.Values.Add(Tuple.Create(evaluations, (double)min)); 220 var overallBestQualities = algorithms.Select(a => ((DoubleValue)a.Results["BestQuality"].Value).Value).ToArray(); 221 222 do { 223 var tries = 0; 224 var lastSuccess = 0; 225 226 while (ExecutionTime < MaximumRuntime && !cancellationToken.IsCancellationRequested && 227 (!Restart || (tries < MinTries || (tries - lastSuccess) < tries * LastSuccessPercentage))) { 228 ++tries; 229 ++((IntValue)Results["Tries"].Value).Value; 230 231 algorithms[worst.Index].Start(cancellationToken); 232 qualities[worst.Index] = (int)((DoubleValue)algorithms[worst.Index].Results["BestQuality"].Value).Value; 233 worst = qualities.Select((v, i) => new { Index = i, Quality = v }).MaxItems(x => x.Quality).First(); 234 235 var evaluations = evaluationsPrevTries + GetEvaluatedSolutions(); 236 var time = ExecutionTime.TotalSeconds; 237 var qpcRow = qualityPerClock.Rows.First(); 238 var qpeRow = qualityPerEvaluations.Rows.First(); 239 qpcRow.Values[qpcRow.Values.Count - 1] = Tuple.Create(time, (double)Math.Min(worst.Quality, min)); 240 qpeRow.Values[qpeRow.Values.Count - 1] = Tuple.Create(evaluations, (double)Math.Min(worst.Quality, min)); 241 242 if (worst.Quality < min) { 243 min = worst.Quality; 244 overallBestQualities[worst.Index] = min; 245 ((IntValue)Results["Nest with maximum T"].Value).Value = worst.Index + 1; 246 ((IntValue)Results["Maximum T"].Value).Value = min; 247 ((DoubleValue)Results["BestQuality"].Value).Value = min; 248 ((DoubleValue)Results["Best Solution Found After Evaluated Solutions"].Value).Value = evaluations; 249 ((TimeSpanValue)Results["Best Solution Found At"].Value).Value = TimeSpan.FromSeconds(time); 250 ((PercentValue)Results["Delta T"].Value).Value = (min - Problem.BestKnownQuality) / Problem.BestKnownQuality; 251 qpcRow.Values.Add(Tuple.Create(time, (double)min)); 252 qpeRow.Values.Add(Tuple.Create(evaluations, (double)min)); 253 lastSuccess = tries; 254 } 188 255 } 189 256 190 if (cancellationToken.IsCancellationRequested) return; 257 if (cancellationToken.IsCancellationRequested || ExecutionTime >= MaximumRuntime || !Restart) 258 break; 259 260 evaluationsPrevTries += GetEvaluatedSolutions(); 261 262 // restart worst algorithm 263 var worstAlgorithm = algorithms[worst.Index]; 264 var prevGenerations = ((IntValue)worstAlgorithm.Results["Generation"].Value).Value; 265 var prevEvaluatedSolutions = ((IntValue)worstAlgorithm.Results["EvaluatedSolutions"].Value).Value; 266 267 worstAlgorithm.Prepare(); 268 worstAlgorithm.Start(cancellationToken); 269 ++((IntValue)Results["Tries"].Value).Value; 270 271 ((IntValue)worstAlgorithm.Results["Generation"].Value).Value += prevGenerations; 272 ((IntValue)worstAlgorithm.Results["EvaluatedSolutions"].Value).Value += prevEvaluatedSolutions; 273 } while (Restart); 274 275 for (var i = 0; i < algorithms.Count(); ++i) { 276 if (overallBestQualities[i] < ((DoubleValue)algorithms[i].Results["BestQuality"].Value).Value) { 277 ((DoubleValue)algorithms[i].Results["BestQuality"].Value).Value = overallBestQualities[i]; 278 } 191 279 } 192 280 } -
branches/CFSAP/HeuristicLab.Problems.Scheduling.CFSAP/3.3/OneOptAssignment.cs
r15493 r15533 23 23 using HeuristicLab.Core; 24 24 using HeuristicLab.Data; 25 using HeuristicLab.Encodings.BinaryVectorEncoding; 25 26 using HeuristicLab.Encodings.PermutationEncoding; 26 27 27 28 namespace HeuristicLab.Problems.Scheduling.CFSAP { 28 public static class O ptimalAssignment {29 public static class OneOptAssignment { 29 30 30 public static int[] MakeAssignment(Permutation order, IntMatrix processingTimes, ItemList<IntMatrix> setupTimes, out int T) { 31 var N = order.Length; 31 public static BinaryVector MakeAssignment(Permutation order, BinaryVector assignment, IntMatrix processingTimes, ItemList<IntMatrix> setupTimes, out int T) { 32 var oneOptAssignment = (BinaryVector)assignment.Clone(); 33 T = CFSAP.EvaluateAssignment(order, assignment, processingTimes, setupTimes); 32 34 33 int[,,] weights = new int[2, 2 * N, 2 * N]; 34 int[,] graph = new int[2, N]; 35 int[,] prevPath = new int[2, N + 1]; //Only for optimal assignment evaluation 36 int[] optimalAssignment = new int[N]; //Only for optimal assignment evaluation 35 while (true) { 36 var foundBetterSolution = false; 37 37 38 //Calculate weights in the graph 39 for (int S = 0; S < N; S++) { //Starting point of the arc 40 for (int sM = 0; sM < 2; sM++) { //Starting point machine 41 int eM = sM == 0 ? 1 : 0; 42 weights[sM, S, S + 1] = 0; 43 44 for (int E = S + 2; E < S + N; E++) 45 weights[sM, S, E] = 46 weights[sM, S, E - 1] + 47 processingTimes[eM, order[(E - 1) % N]] + 48 setupTimes[eM][order[(E - 1) % N], order[E % N]]; 49 50 for (int E = S + 1; E < S + N; E++) 51 weights[sM, S, E] += ( 52 processingTimes[sM, order[S % N]] + 53 setupTimes[sM][order[S % N], order[(E + 1) % N]] 54 ); 55 } 56 } 57 58 //Determine the shortest path in the graph 59 T = int.MaxValue / 2; 60 for (int S = 0; S < N - 1; S++) //Start node in graph O(N) 61 for (int SM = 0; SM < 2; SM++) { //Start node machine in graph O(1) 62 graph[SM, S] = 0; 63 graph[SM == 0 ? 1 : 0, S] = int.MaxValue / 2; 64 prevPath[SM, 0] = -1; 65 for (int E = S + 1; E < N; E++) //Currently calculated node O(N) 66 for (int EM = 0; EM < 2; EM++) { //Currently calculated node machine O(1) 67 graph[EM, E] = int.MaxValue / 2; 68 for (int EC = S; EC < E; EC++) { //Nodes connected to node E O(N) 69 int newWeight = graph[EM == 0 ? 1 : 0, EC] + weights[EM == 0 ? 1 : 0, EC, E]; 70 if (newWeight < graph[EM, E]) { 71 graph[EM, E] = newWeight; 72 prevPath[EM, E] = EC; 73 } 74 } 75 } 76 77 int EP = S + N; //End point. 78 int newT = int.MaxValue / 2; 79 for (int EC = S + 1; EC < N; EC++) { //Nodes connected to EP O(N) 80 int newWeight = graph[SM == 0 ? 1 : 0, EC] + weights[SM == 0 ? 1 : 0, EC, EP]; 81 if (newWeight < newT) { 82 newT = newWeight; 83 prevPath[SM, S] = EC; 84 } 85 } 86 87 if (newT < T) { 38 for (var i = 0; i < oneOptAssignment.Length; ++i) { 39 var newAssignment = (BinaryVector)oneOptAssignment.Clone(); 40 newAssignment[i] = !newAssignment[i]; 41 int newT = CFSAP.EvaluateAssignment(order, newAssignment, processingTimes, setupTimes); 42 if (newT < T) { // new best solution has been found 43 oneOptAssignment = newAssignment; 88 44 T = newT; 89 optimalAssignment = MakeAssignement(S, SM, prevPath, order); 45 foundBetterSolution = true; 46 break; 90 47 } 91 48 } 92 49 93 //Omitted solutions 94 for (int machine = 0; machine < 2; machine++) { 95 int[] assignment = Enumerable.Repeat(machine, N).ToArray(); 96 int newT = CFSAP.EvaluateAssignement(order, assignment, processingTimes, setupTimes); 97 if (newT < T) { //New best solution has been found 98 T = newT; 99 optimalAssignment = assignment; 100 } 50 if (!foundBetterSolution) 51 return oneOptAssignment; 101 52 } 102 103 return optimalAssignment;104 }105 106 private static int[] MakeAssignement(int start, int startMach, int[,] prevPath, Permutation order) {107 var N = order.Length;108 int[] assignment = Enumerable.Repeat(-1, N).ToArray();109 var inverseOrder = new int[N];110 111 for (int i = 0; i < N; i++)112 inverseOrder[order[i]] = i;113 114 int end = start + N;115 116 int currMach = startMach;117 int currNode = start;118 while (true) {119 assignment[inverseOrder[currNode]] = currMach;120 currNode = prevPath[currMach, currNode];121 currMach = currMach == 0 ? 1 : 0;122 if (currNode == start)123 break;124 }125 126 currMach = startMach;127 for (int i = 0; i < N; i++) {128 if (assignment[inverseOrder[i]] != -1)129 currMach = currMach == 0 ? 1 : 0;130 else131 assignment[inverseOrder[i]] = currMach;132 }133 134 return assignment;135 53 } 136 54 } -
branches/CFSAP/HeuristicLab.Problems.Scheduling.CFSAP/3.3/OptimalPolynomialAssignment.cs
r15532 r15533 26 26 27 27 namespace HeuristicLab.Problems.Scheduling.CFSAP { 28 public static class Optimal Assignment {28 public static class OptimalPolynomialAssignment { 29 29 30 30 public static int[] MakeAssignment(Permutation order, IntMatrix processingTimes, ItemList<IntMatrix> setupTimes, out int T) { … … 33 33 int[,,] weights = new int[2, 2 * N, 2 * N]; 34 34 int[,] graph = new int[2, N]; 35 int[,] prevPath = new int[2, N + 1]; 36 int[] optimalAssignment = new int[N]; 35 int[,] prevPath = new int[2, N + 1]; //Only for optimal assignment evaluation 36 int[] optimalAssignment = new int[N]; //Only for optimal assignment evaluation 37 37 38 38 //Calculate weights in the graph 39 for (int S = 0; S < N; S++) { //Starting point of the arc40 for (int sM = 0; sM < 2; sM++) { 39 for (int S = 0; S < N; S++) { //Starting point of the arc 40 for (int sM = 0; sM < 2; sM++) { //Starting point machine 41 41 int eM = sM == 0 ? 1 : 0; 42 42 weights[sM, S, S + 1] = 0; … … 87 87 if (newT < T) { 88 88 T = newT; 89 optimalAssignment = MakeAssign ement(S, SM, prevPath, order);89 optimalAssignment = MakeAssignment(S, SM, prevPath, order); 90 90 } 91 91 } … … 104 104 } 105 105 106 private static int[] MakeAssign ement(int start, int startMach, int[,] prevPath, Permutation order) {106 private static int[] MakeAssignment(int start, int startMach, int[,] prevPath, Permutation order) { 107 107 var N = order.Length; 108 108 int[] assignment = Enumerable.Repeat(-1, N).ToArray();
Note: See TracChangeset
for help on using the changeset viewer.