Free cookie consent management tool by TermsFeed Policy Generator

Ignore:
Timestamp:
12/04/17 23:00:03 (7 years ago)
Author:
abeham
Message:

#1614:

  • branched optimization
  • adapted references
  • renamed plugin
Location:
branches/GeneralizedQAP
Files:
8 edited

Legend:

Unmodified
Added
Removed
  • branches/GeneralizedQAP

    • Property svn:ignore
      •  

        old new  
        22TestResults
        33*.user
         4.vs
  • branches/GeneralizedQAP/HeuristicLab.Problems.GeneralizedQuadraticAssignment/3.3/Analyzers/GQAPPopulationDiversityAnalyzer.cs

    r7438 r15490  
    2727using HeuristicLab.Parameters;
    2828using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
    29 using HeuristicLab.Problems.GeneralizedQuadraticAssignment.Common;
    3029
    3130namespace HeuristicLab.Problems.GeneralizedQuadraticAssignment.Analyzers {
     
    7170      for (int i = 0; i < solutions.Length - 1; i++)
    7271        for (int j = i + 1; j < solutions.Length; j++) {
    73           result[i, j] = IntegerVectorEqualityComparer.GetSimilarity(solutions[i], solutions[j]);
     72          result[i, j] = HammingSimilarityCalculator.CalculateSimilarity(solutions[i], solutions[j]);
    7473          result[j, i] = result[i, j];
    7574        }
  • branches/GeneralizedQAP/HeuristicLab.Problems.GeneralizedQuadraticAssignment/3.3/GeneralizedQuadraticAssignmentProblem.cs

    r7970 r15490  
    3535
    3636namespace HeuristicLab.Problems.GeneralizedQuadraticAssignment {
    37   [Item("Generalized Quadratic Assignment Problem", "The Generalized Quadratic Assignment Problem (GQAP) is a generalization of the QAP in that it allows to assign multiple facilities (here called equipment) to a single location. The problem is described in Lee, C.G., and Ma, Z. 2003. The Generalized Quadratic Assignment Problem. Technical Report M5S 3G8, University of Toronto, Canada.")]
     37  [Item("Generalized Quadratic Assignment Problem (GQAP)", "The Generalized Quadratic Assignment Problem (GQAP) is a generalization of the QAP in that it allows to assign multiple facilities (here called equipment) to a single location. The problem is described in Lee, C.G., and Ma, Z. 2003. The Generalized Quadratic Assignment Problem. Technical Report M5S 3G8, University of Toronto, Canada.")]
    3838  [Creatable("Problems")]
    3939  [StorableClass]
  • branches/GeneralizedQAP/HeuristicLab.Problems.GeneralizedQuadraticAssignment/3.3/HeuristicLab.Problems.GeneralizedQuadraticAssignment-3.3.csproj

    r13418 r15490  
    7171    <Reference Include="HeuristicLab.Operators-3.3">
    7272      <HintPath>..\..\..\..\trunk\sources\bin\HeuristicLab.Operators-3.3.dll</HintPath>
    73       <Private>False</Private>
    74     </Reference>
    75     <Reference Include="HeuristicLab.Optimization-3.3">
    76       <HintPath>..\..\..\..\trunk\sources\bin\HeuristicLab.Optimization-3.3.dll</HintPath>
    7773      <Private>False</Private>
    7874    </Reference>
     
    184180  </ItemGroup>
    185181  <ItemGroup>
     182    <ProjectReference Include="..\..\HeuristicLab.Optimization\3.3\HeuristicLab.Optimization-3.3.csproj">
     183      <Project>{14ab8d24-25bc-400c-a846-4627aa945192}</Project>
     184      <Name>HeuristicLab.Optimization-3.3</Name>
     185      <Private>False</Private>
     186    </ProjectReference>
    186187    <ProjectReference Include="..\..\HeuristicLab.Problems.GeneralizedQuadraticAssignment.Common\3.3\HeuristicLab.Problems.GeneralizedQuadraticAssignment.Common-3.3.csproj">
    187188      <Project>{DA367BE5-4F53-4243-933B-32AAB86189D5}</Project>
  • branches/GeneralizedQAP/HeuristicLab.Problems.GeneralizedQuadraticAssignment/3.3/HeuristicLab.Problems.GeneralizedQuadraticAssignment-3.3.csproj.user

    r11505 r15490  
    33  <PropertyGroup Condition="'$(Configuration)|$(Platform)' == 'Debug|AnyCPU'">
    44    <StartAction>Program</StartAction>
    5     <StartProgram>C:\Users\P40311\Work\HL3\trunk\sources\bin\HeuristicLab 3.3.exe</StartProgram>
     5    <StartProgram>C:\Users\P40311\Work\core\trunk\sources\bin\HeuristicLab 3.3.exe</StartProgram>
    66    <StartArguments>/hideStarter /start:Optimizer</StartArguments>
    77  </PropertyGroup>
  • branches/GeneralizedQAP/HeuristicLab.Problems.GeneralizedQuadraticAssignment/3.3/Operators/Crossovers/CordeauCrossover.cs

    r7970 r15490  
    2121
    2222using System;
     23using System.Linq;
    2324using HeuristicLab.Common;
    2425using HeuristicLab.Core;
     
    2728using HeuristicLab.Parameters;
    2829using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
     30using HeuristicLab.Random;
    2931
    3032namespace HeuristicLab.Problems.GeneralizedQuadraticAssignment {
     
    7476    public IValueLookupParameter<IGQAPEvaluator> EvaluatorParameter {
    7577      get { return (IValueLookupParameter<IGQAPEvaluator>)Parameters["Evaluator"]; }
     78    }
     79    public ILookupParameter<IntValue> EvaluatedSolutionsParameter {
     80      get { return (ILookupParameter<IntValue>)Parameters["EvaluatedSolutions"]; }
    7681    }
    7782
     
    96101      Parameters.Add(new ValueLookupParameter<DoubleValue>("ExpectedRandomQuality", GeneralizedQuadraticAssignmentProblem.ExpectedRandomQualityDescription));
    97102      Parameters.Add(new ValueLookupParameter<IGQAPEvaluator>("Evaluator", "The evaluator used to evaluate solutions."));
     103      Parameters.Add(new LookupParameter<IntValue>("EvaluatedSolutions", "The number of evaluated solutions."));
    98104    }
    99105
     
    107113      DoubleMatrix weights, DoubleMatrix distances, DoubleMatrix installationCosts,
    108114      DoubleArray demands, DoubleArray capacities,
    109       double transportationCosts, double expectedRandomQuality, IGQAPEvaluator evaluator) {
    110       var mediana = Inizialize(distances);
     115      double transportationCosts, double expectedRandomQuality, IGQAPEvaluator evaluator, IntValue evaluatedSolutions) {
     116      var medianDistances = Enumerable.Range(0, distances.Rows).Select(x => distances.GetRow(x).Median()).ToArray();
     117
    111118      int m = capacities.Length;
    112119      int n = demands.Length;
    113       int i, j, k, ik1, ik2;
    114       int control;
    115       bool nofound = false, onefound = false;
    116       double fbest;
    117       IntegerVector son = new IntegerVector(parent1.Length), result = null;
     120     
     121      bool onefound = false;
     122      double fbest, fbestAttempt = maximization.Value ? double.MinValue : double.MaxValue;
     123      IntegerVector bestAttempt = null;
     124      IntegerVector result = null;
    118125
    119126      fbest = quality1.Value;
     
    126133      }
    127134      var cap = new double[m];
    128       for (i = 0; i < m; i++) {
    129 
    130         for (j = 0; j < m; j++) cap[j] = 0;
    131 
    132         for (k = 0; k < n; k++) {
    133           son[k] = -1;
    134           ik1 = parent1[k];
    135           ik2 = parent2[k];
    136           if (distances[i, ik1] < mediana[i]) {
    137             son[k] = ik1;
    138             cap[ik1] += demands[k];
    139           } else if (distances[i, ik2] > mediana[i]) {
    140             son[k] = ik2;
    141             cap[ik2] += demands[k];
    142           }
    143         }
    144         k = 0;
    145         nofound = false;
    146         while (k < n && !nofound) {
    147           if (son[k] < 0) {
    148             control = 0;
    149             do {
    150               j = random.Next(m);
    151               control++;
    152             }
    153             while (cap[j] + demands[k] > capacities[j] && control < 3 * m);
    154             if (cap[j] + demands[k] <= capacities[j]) {
    155               son[k] = j;
    156               cap[j] += demands[k];
    157             } else {
    158               nofound = true;
    159             }
    160           }
    161           k++;
    162         }
    163         if (!nofound) {
    164           double sonQual = evaluator.Evaluate(son, weights, distances, installationCosts, demands, capacities, transportationCosts, expectedRandomQuality);
    165           if (sonQual < fbest) {
    166             fbest = sonQual;
    167             result = (IntegerVector)son.Clone();
     135      for (var i = 0; i < m; i++) {
     136        int unassigned;
     137        Array.Clear(cap, 0, m);
     138        var child = Merge(parent1, parent2, distances, demands, medianDistances, m, n, i, cap, out unassigned);
     139        if (unassigned > 0)
     140          TryRandomAssignment(random, demands, capacities, m, n, cap, child, ref unassigned);
     141        if (unassigned == 0) {
     142          var childFit = evaluator.Evaluate(child, weights, distances, installationCosts, demands, capacities, transportationCosts, expectedRandomQuality);
     143          evaluatedSolutions.Value++;
     144          if (maximization.Value && childFit >= fbest
     145            || !maximization.Value && childFit <= fbest) {
     146            fbest = childFit;
     147            result = child;
    168148            onefound = true;
    169149          }
    170         }/* else {
    171           abortedmerge++;
    172           printf("aborted merge %8d\n", abortedmerge);
    173         } */
    174       }
    175       if (!onefound && !nofound) {
    176         i = random.Next(m);
    177         for (j = 0; j < m; j++) {
    178           cap[j] = 0.0;
    179         }
    180         for (k = 0; k < n; k++) {
    181           son[k] = -1;
    182           ik1 = parent1[k];
    183           ik2 = parent2[k];
    184           if (distances[i, ik1] < mediana[i]) {
    185             son[k] = ik1;
    186             cap[ik1] += demands[k];
    187           } else if (distances[i, ik2] > mediana[i]) {
    188             son[k] = ik2;
    189             cap[ik2] += demands[k];
     150          if (!onefound && (maximization.Value && fbestAttempt < childFit || !maximization.Value && fbestAttempt > childFit)) {
     151            bestAttempt = child;
     152            fbestAttempt = childFit;
    190153          }
    191154        }
    192         for (k = 0; k < n; k++) {
    193           if (son[k] < 0) {
    194             j = random.Next(m);
    195             son[k] = j;
    196             cap[j] += demands[k];
    197           }
    198         }
    199         if (result == null) {
    200           result = (IntegerVector)son.Clone();
     155      }
     156
     157      if (!onefound) {
     158        var i = random.Next(m);
     159        int unassigned;
     160        Array.Clear(cap, 0, m);
     161        var child = Merge(parent1, parent2, distances, demands, medianDistances, m, n, i, cap, out unassigned);
     162        RandomAssignment(random, demands, capacities, m, n, cap, child, ref unassigned);
     163
     164        var childFit = evaluator.Evaluate(child, weights, distances, installationCosts, demands, capacities, transportationCosts, expectedRandomQuality);
     165        evaluatedSolutions.Value++;
     166        if (childFit < fbest) {
     167          fbest = childFit;
     168          result = child;
    201169          onefound = true;
    202         } else {
    203           double sonQual = evaluator.Evaluate(son, weights, distances, installationCosts, demands, capacities, transportationCosts, expectedRandomQuality);
    204           if (sonQual < fbest) {
    205             fbest = sonQual;
    206             result = (IntegerVector)son.Clone();
    207             onefound = true;
    208           }
    209         }
     170        }
     171
     172        if (!onefound && (maximization.Value && fbestAttempt < childFit || !maximization.Value && fbestAttempt > childFit)) {
     173          bestAttempt = child;
     174          fbestAttempt = childFit;
     175        }
     176      }
    210177        /*if (tabufix(&son, 0.5 * sqrt(n * m), round(n * m * log10(n)), &tabufix_it)) {
    211178          solution_cost(&son);
     
    216183            merge_fixed++;
    217184          }*/
    218       }
    219       if (result == null) throw new InvalidOperationException("Child could not be created.");
    220       return result;
     185      return result ?? bestAttempt;
     186    }
     187
     188    private static IntegerVector Merge(IntegerVector p1, IntegerVector p2,
     189      DoubleMatrix distances, DoubleArray demands, double[] mediana,
     190      int m, int n, int i, double[] cap, out int unassigned) {
     191      unassigned = n;
     192      var child = new IntegerVector(n);
     193      for (var k = 0; k < n; k++) {
     194        child[k] = -1;
     195        var ik1 = p1[k];
     196        var ik2 = p2[k];
     197        if (distances[i, ik1] < mediana[i]) {
     198          child[k] = ik1;
     199          cap[ik1] += demands[k];
     200          unassigned--;
     201        } else if (distances[i, ik2] > mediana[i]) {
     202          child[k] = ik2;
     203          cap[ik2] += demands[k];
     204          unassigned--;
     205        };
     206      }
     207      return child;
     208    }
     209
     210    private static bool TryRandomAssignment(IRandom random, DoubleArray demands, DoubleArray capacities, int m, int n, double[] cap, IntegerVector child, ref int unassigned) {
     211      var unbiasedOrder = Enumerable.Range(0, n).Shuffle(random).ToList();
     212      for (var idx = 0; idx < n; idx++) {
     213        var k = unbiasedOrder[idx];
     214        if (child[k] < 0) {
     215          var feasibleInserts = Enumerable.Range(0, m)
     216            .Select((v, i) => new { Pos = i, Slack = capacities[i] - cap[i] })
     217            .Where(x => x.Slack >= demands[k]).ToList();
     218          if (feasibleInserts.Count == 0) return false;
     219          var j = feasibleInserts.SampleRandom(random).Pos;
     220          child[k] = j;
     221          cap[j] += demands[k];
     222          unassigned--;
     223        }
     224      }
     225      return true;
     226    }
     227
     228    private static void RandomAssignment(IRandom random, DoubleArray demands, DoubleArray capacities, int m, int n, double[] cap, IntegerVector child, ref int unassigned) {
     229      for (var k = 0; k < n; k++) {
     230        if (child[k] < 0) {
     231          var j = random.Next(m);
     232          child[k] = j;
     233          cap[j] += demands[k];
     234          unassigned--;
     235        }
     236      }
    221237    }
    222238
     
    232248        DemandsParameter.ActualValue, CapacitiesParameter.ActualValue,
    233249        TransportationCostsParameter.ActualValue.Value, ExpectedRandomQualityParameter.ActualValue.Value,
    234         EvaluatorParameter.ActualValue);
    235     }
    236 
    237     private static double[] Inizialize(DoubleMatrix distances) {
    238       int i, j;
    239       double mdi;
    240       double delta;
    241       int ilow, ihigh;
    242       bool balance;
    243       int operation;
    244       int count;
    245       int m = distances.Rows;
    246 
    247       double[] mediana = new double[distances.Rows];
    248 
    249       for (i = 0; i < m; i++) {
    250         mdi = 0;
    251         for (j = 0; j < m; j++) {
    252           mdi += distances[i, j];
    253         }
    254         mediana[i] = mdi / m;
    255         balance = false;
    256         delta = 1;
    257         operation = 0;
    258         count = 0;
    259         while (!balance && count < 200) {
    260           ilow = 0;
    261           ihigh = 0;
    262           count++;
    263           for (j = 0; j < m; j++) {
    264             if (distances[i, j] < mediana[i]) ilow++;
    265             else if (distances[i, j] > mediana[i]) ihigh++;
    266           }
    267           if (ilow > ((m + 1) / 2)) {
    268             mediana[i] = mediana[i] - delta;
    269             if (operation == 1) delta = delta / 2;
    270             operation = -1;
    271           } else if (ihigh > ((m + 1) / 2)) {
    272             mediana[i] = mediana[i] + delta;
    273             if (operation == -1) delta = delta / 2;
    274             operation = 1;
    275           } else balance = true;
    276         }
    277       }
    278       return mediana;
     250        EvaluatorParameter.ActualValue, EvaluatedSolutionsParameter.ActualValue);
    279251    }
    280252  }
  • branches/GeneralizedQAP/HeuristicLab.Problems.GeneralizedQuadraticAssignment/3.3/Operators/Crossovers/GQAPPathRelinking.cs

    r7970 r15490  
    2929using HeuristicLab.Parameters;
    3030using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
    31 using HeuristicLab.Problems.GeneralizedQuadraticAssignment.Common;
    3231using HeuristicLab.Random;
    3332
     
    138137      var fix = new HashSet<int>();
    139138      var nonFix = new HashSet<int>(Enumerable.Range(0, demands.Length));
    140       var phi = new HashSet<int>(IntegerVectorEqualityComparer.GetDifferingIndices(pi_prime, target));
     139      var phi = new HashSet<int>((pi_prime.GetDifferingIndices(target)));
    141140
    142141      while (phi.Any()) {
     
    162161              for (int i = 0; i < B.Count; i++) {
    163162                if (IsBetter(maximization.Value, solution.Quality.Value, B[i].Quality.Value)) {
    164                   var similarity = IntegerVectorEqualityComparer.GetSimilarity(solution.Assignment, B[i].Assignment);
     163                  var similarity = HammingSimilarityCalculator.CalculateSimilarity(solution.Assignment, B[i].Assignment);
    165164                  if (similarity == 1.0) {
    166165                    mostSimilarIndex = -1;
     
    177176              bool contains = false;
    178177              foreach (var b in B) {
    179                 if (!IntegerVectorEqualityComparer.GetDifferingIndices(solution.Assignment, b.Assignment).Any()) {
     178                if (!solution.Assignment.GetDifferingIndices(b.Assignment).Any()) {
    180179                  contains = true;
    181180                  break;
     
    190189          if (maximization.Value) pi = B.SampleProportional(random, 1, B.Select(x => x.Quality.Value), false).First();
    191190          else pi = B.SampleProportional(random, 1, B.Select(x => 1.0 / x.Quality.Value), false).First();
    192           var diff = IntegerVectorEqualityComparer.GetDifferingIndices(pi.Assignment, target);
     191          var diff = pi.Assignment.GetDifferingIndices(target);
    193192          var I = phi.Except(diff);
    194193          var i = I.SampleRandom(random);
     
    204203          }
    205204        } else return result;
    206         phi = new HashSet<int>(IntegerVectorEqualityComparer.GetDifferingIndices(pi_prime, target));
     205        phi = new HashSet<int>(pi_prime.GetDifferingIndices(target));
    207206      }
    208207
  • branches/GeneralizedQAP/HeuristicLab.Problems.GeneralizedQuadraticAssignment/3.3/Operators/PopulationReducers/GQAPQualitySimilarityReducer.cs

    r7523 r15490  
    9898
    9999      foreach (var candidate in candidates) {
    100         double[] similarities = population.Select(x => IntegerVectorEqualityComparer.GetSimilarity(x.Solution, candidate.Solution)).ToArray();
     100        double[] similarities = population.Select(x => HammingSimilarityCalculator.CalculateSimilarity(x.Solution, candidate.Solution)).ToArray();
    101101        if (!similarities.Any()) {
    102102          population.Add(candidate);
Note: See TracChangeset for help on using the changeset viewer.