Changeset 15447
- Timestamp:
- 11/03/17 15:28:23 (7 years ago)
- Location:
- trunk/sources
- Files:
-
- 2 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/SingleObjective/Evaluators/SymbolicRegressionConstantOptimizationEvaluator.cs
r15371 r15447 168 168 TreeToAutoDiffTermConverter.ParametricFunction func; 169 169 TreeToAutoDiffTermConverter.ParametricFunctionGradient func_grad; 170 if (!TreeToAutoDiffTermConverter.TryConvertToAutoDiff(tree, updateVariableWeights, out parameters, out initialConstants, out func, out func_grad))170 if (!TreeToAutoDiffTermConverter.TryConvertToAutoDiff(tree, updateVariableWeights, applyLinearScaling, out parameters, out initialConstants, out func, out func_grad)) 171 171 throw new NotSupportedException("Could not optimize constants of symbolic expression tree due to not supported symbols used in the tree."); 172 172 if (parameters.Count == 0) return 0.0; // gkronber: constant expressions always have a R² of 0.0 … … 175 175 176 176 //extract inital constants 177 double[] c = new double[initialConstants.Length + 2]; 178 { 179 c[0] = 0.0; 180 c[1] = 1.0; 181 Array.Copy(initialConstants, 0, c, 2, initialConstants.Length); 182 } 183 double[] originalConstants = (double[])c.Clone(); 177 double[] c; 178 if (applyLinearScaling) { 179 c = new double[initialConstants.Length + 2]; 180 { 181 c[0] = 0.0; 182 c[1] = 1.0; 183 Array.Copy(initialConstants, 0, c, 2, initialConstants.Length); 184 } 185 } else { 186 c = (double[])initialConstants.Clone(); 187 } 188 184 189 double originalQuality = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(interpreter, tree, lowerEstimationLimit, upperEstimationLimit, problemData, rows, applyLinearScaling); 185 190 … … 219 224 alglib.lsfitfit(state, function_cx_1_func, function_cx_1_grad, xrep, null); 220 225 alglib.lsfitresults(state, out retVal, out c, out rep); 221 } 222 catch (ArithmeticException) { 226 } catch (ArithmeticException) { 223 227 return originalQuality; 224 } 225 catch (alglib.alglibexception) { 228 } catch (alglib.alglibexception) { 226 229 return originalQuality; 227 230 } 228 231 229 232 //retVal == -7 => constant optimization failed due to wrong gradient 230 if (retVal != -7) UpdateConstants(tree, c.Skip(2).ToArray(), updateVariableWeights); 233 if (retVal != -7) { 234 if (applyLinearScaling) UpdateConstants(tree, c.Skip(2).ToArray(), updateVariableWeights); 235 else UpdateConstants(tree, c.ToArray(), updateVariableWeights); 236 } 231 237 var quality = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(interpreter, tree, lowerEstimationLimit, upperEstimationLimit, problemData, rows, applyLinearScaling); 232 238 233 if (!updateConstantsInTree) UpdateConstants(tree, originalConstants.Skip(2).ToArray(), updateVariableWeights); 239 if (!updateConstantsInTree) UpdateConstants(tree, initialConstants.ToArray(), updateVariableWeights); 240 234 241 if (originalQuality - quality > 0.001 || double.IsNaN(quality)) { 235 UpdateConstants(tree, originalConstants.Skip(2).ToArray(), updateVariableWeights);242 UpdateConstants(tree, initialConstants.ToArray(), updateVariableWeights); 236 243 return originalQuality; 237 244 } -
trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Converters/TreeToAutoDiffTermConverter.cs
r14950 r15447 87 87 #endregion 88 88 89 public static bool TryConvertToAutoDiff(ISymbolicExpressionTree tree, bool makeVariableWeightsVariable, 89 public static bool TryConvertToAutoDiff(ISymbolicExpressionTree tree, bool makeVariableWeightsVariable, bool addLinearScalingTerms, 90 90 out List<DataForVariable> parameters, out double[] initialConstants, 91 91 out ParametricFunction func, … … 93 93 94 94 // use a transformator object which holds the state (variable list, parameter list, ...) for recursive transformation of the tree 95 var transformator = new TreeToAutoDiffTermConverter(makeVariableWeightsVariable );95 var transformator = new TreeToAutoDiffTermConverter(makeVariableWeightsVariable, addLinearScalingTerms); 96 96 AutoDiff.Term term; 97 97 try { … … 120 120 private readonly List<AutoDiff.Variable> variables; 121 121 private readonly bool makeVariableWeightsVariable; 122 123 private TreeToAutoDiffTermConverter(bool makeVariableWeightsVariable) { 122 private readonly bool addLinearScalingTerms; 123 124 private TreeToAutoDiffTermConverter(bool makeVariableWeightsVariable, bool addLinearScalingTerms) { 124 125 this.makeVariableWeightsVariable = makeVariableWeightsVariable; 126 this.addLinearScalingTerms = addLinearScalingTerms; 125 127 this.initialConstants = new List<double>(); 126 128 this.parameters = new Dictionary<DataForVariable, AutoDiff.Variable>(); … … 248 250 } 249 251 if (node.Symbol is StartSymbol) { 250 var alpha = new AutoDiff.Variable(); 251 var beta = new AutoDiff.Variable(); 252 variables.Add(beta); 253 variables.Add(alpha); 254 return ConvertToAutoDiff(node.GetSubtree(0)) * alpha + beta; 252 if (addLinearScalingTerms) { 253 var alpha = new AutoDiff.Variable(); 254 var beta = new AutoDiff.Variable(); 255 variables.Add(beta); 256 variables.Add(alpha); 257 return ConvertToAutoDiff(node.GetSubtree(0)) * alpha + beta; 258 } else return ConvertToAutoDiff(node.GetSubtree(0)); 255 259 } 256 260 throw new ConversionException();
Note: See TracChangeset
for help on using the changeset viewer.