- Timestamp:
- 10/27/17 16:19:11 (7 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
branches/MathNetNumerics-Exploration-2789/HeuristicLab.Algorithms.DataAnalysis.Experimental/GAM.cs
r15433 r15436 44 44 [StorableClass] 45 45 public sealed class GAM : FixedDataAnalysisAlgorithm<IRegressionProblem> { 46 47 private const string LambdaParameterName = "Lambda"; 48 private const string MaxIterationsParameterName = "Max iterations"; 49 private const string MaxInteractionsParameterName = "Max interactions"; 50 51 public IFixedValueParameter<DoubleValue> LambdaParameter { 52 get { return (IFixedValueParameter<DoubleValue>)Parameters[LambdaParameterName]; } 53 } 54 public IFixedValueParameter<IntValue> MaxIterationsParameter { 55 get { return (IFixedValueParameter<IntValue>)Parameters[MaxIterationsParameterName]; } 56 } 57 public IFixedValueParameter<IntValue> MaxInteractionsParameter { 58 get { return (IFixedValueParameter<IntValue>)Parameters[MaxInteractionsParameterName]; } 59 } 60 61 public double Lambda { 62 get { return LambdaParameter.Value.Value; } 63 set { LambdaParameter.Value.Value = value; } 64 } 65 public int MaxIterations { 66 get { return MaxIterationsParameter.Value.Value; } 67 set { MaxIterationsParameter.Value.Value = value; } 68 } 69 public int MaxInteractions { 70 get { return MaxInteractionsParameter.Value.Value; } 71 set { MaxInteractionsParameter.Value.Value = value; } 72 } 73 46 74 [StorableConstructor] 47 75 private GAM(bool deserializing) : base(deserializing) { } 48 76 [StorableHook(HookType.AfterDeserialization)] 49 private void AfterDeserialization() { 77 private void AfterDeserialization() { 50 78 } 51 79 … … 60 88 : base() { 61 89 Problem = new RegressionProblem(); 62 Parameters.Add(new ValueParameter<DoubleValue>("Lambda", "Regularization for smoothing splines", new DoubleValue(1.0))); 63 Parameters.Add(new ValueParameter<IntValue>("Max iterations", "", new IntValue(100))); 64 Parameters.Add(new ValueParameter<IntValue>("Max interactions", "", new IntValue(1))); 65 } 90 Parameters.Add(new FixedValueParameter<DoubleValue>(LambdaParameterName, "Regularization for smoothing splines", new DoubleValue(1.0))); 91 Parameters.Add(new FixedValueParameter<IntValue>(MaxIterationsParameterName, "", new IntValue(100))); 92 Parameters.Add(new FixedValueParameter<IntValue>(MaxInteractionsParameterName, "", new IntValue(1))); 93 } 94 66 95 67 96 protected override void Run(CancellationToken cancellationToken) { 68 69 double lambda = ((IValueParameter<DoubleValue>)Parameters["Lambda"]).Value.Value; 70 int maxIters = ((IValueParameter<IntValue>)Parameters["Max iterations"]).Value.Value; 71 int maxInteractions = ((IValueParameter<IntValue>)Parameters["Max interactions"]).Value.Value; 97 double lambda = Lambda; 98 int maxIters = MaxIterations ; 99 int maxInteractions = MaxInteractions; 72 100 if (maxInteractions < 1 || maxInteractions > 5) throw new ArgumentException("Max interactions is outside the valid range [1 .. 5]"); 73 101 … … 80 108 var inputVars = Problem.ProblemData.AllowedInputVariables.ToArray(); 81 109 var nTerms = inputVars.Length; // LR 82 for (int i=1;i<=maxInteractions;i++) {110 for (int i = 1; i <= maxInteractions; i++) { 83 111 nTerms += inputVars.Combinations(i).Count(); 84 112 } 85 IRegressionModel[] f = new IRegressionModel[nTerms]; 86 for (int i=0;i<f.Length;i++) {113 IRegressionModel[] f = new IRegressionModel[nTerms]; 114 for (int i = 0; i < f.Length; i++) { 87 115 f[i] = new ConstantModel(0.0, problemData.TargetVariable); 88 116 } … … 116 144 } 117 145 118 for (int interaction = 1; interaction <= maxInteractions;interaction++) {146 for (int interaction = 1; interaction <= maxInteractions; interaction++) { 119 147 var selectedVars = HeuristicLab.Common.EnumerableExtensions.Combinations(inputVars, interaction); 120 148 … … 141 169 var model = new RegressionEnsembleModel(f.Concat(new[] { new ConstantModel(avgY, problemData.TargetVariable) })); 142 170 model.AverageModelEstimates = false; 143 Results.Add(new Result("Ensemble solution", model.CreateRegressionSolution((IRegressionProblemData)problemData.Clone())));144 171 var solution = model.CreateRegressionSolution((IRegressionProblemData)problemData.Clone()); 172 Results.Add(new Result("Ensemble solution", solution)); 145 173 } 146 174 … … 187 215 if (inputVars.All(problemData.Dataset.VariableHasType<double>)) { 188 216 var product = problemData.Dataset.GetDoubleValues(inputVars.First(), problemData.TrainingIndices).ToArray(); 189 for (int i = 1;i<inputVars.Length;i++) {217 for (int i = 1; i < inputVars.Length; i++) { 190 218 product = product.Zip(problemData.Dataset.GetDoubleValues(inputVars[i], problemData.TrainingIndices), (pi, vi) => pi * vi).ToArray(); 191 219 } … … 210 238 pd.TestPartition.End = problemData.TestPartition.End; 211 239 double rmsError, oobRmsError; 212 double avgRelError, oobAvgRelError; 240 double avgRelError, oobAvgRelError; 213 241 return RandomForestRegression.CreateRandomForestRegressionModel(pd, 100, 0.5, 0.5, 1234, out rmsError, out avgRelError, out oobRmsError, out oobAvgRelError); 214 242 } else return new ConstantModel(target.Average(), problemData.TargetVariable);
Note: See TracChangeset
for help on using the changeset viewer.