Free cookie consent management tool by TermsFeed Policy Generator

Ignore:
Timestamp:
08/10/17 17:16:25 (7 years ago)
Author:
gkronber
Message:

#2789 worked on NLR with constraints

Location:
branches/MathNetNumerics-Exploration-2789/HeuristicLab.Algorithms.DataAnalysis.Experimental
Files:
2 edited

Legend:

Unmodified
Added
Removed
  • branches/MathNetNumerics-Exploration-2789/HeuristicLab.Algorithms.DataAnalysis.Experimental/SymbolicRegressionConstantOptimizationEvaluator.cs

    r15314 r15322  
    3333using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
    3434using DiffSharp.Interop.Float64;
     35using System.Diagnostics;
    3536
    3637namespace HeuristicLab.Algorithms.DataAnalysis.Experimental {
     
    179180
    180181      // extract inital constants
    181       double[] c = new double[initialConstants.Length + 2];
     182      double[] c = new double[initialConstants.Length];
    182183      double[] s = new double[c.Length];
    183184      {
    184         c[0] = 1.0;
    185         c[1] = 0.0;
    186         Array.Copy(initialConstants, 0, c, 2, initialConstants.Length);
     185        Array.Copy(initialConstants, 0, c, 0, initialConstants.Length);
     186
     187        // c[0] = 1.0;
     188        // c[1] = 0.0;
     189        // Array.Copy(initialConstants, 0, c, 2, initialConstants.Length);
    187190
    188191        // s[0] = 1.0;
     
    200203
    201204      IDataset ds = problemData.Dataset;
    202       double[,] x = new double[ds.Rows, parameters.Count];
     205      double[,] x = new double[rows.Count(), parameters.Count];
    203206      int col = 0;
    204207      int row = 0;
     
    206209        row = 0;
    207210        // copy training rows
    208         foreach (var r in rows) { 
     211        foreach (var r in rows) {
    209212          if (ds.VariableHasType<double>(info.variableName)) {
    210213            x[row, col] = ds.GetDoubleValue(info.variableName, r + info.lag);
     
    222225      // only count constraints
    223226      var constraintRows = Enumerable.Range(0, problemData.Dataset.Rows).Where(rIdx => !string.IsNullOrEmpty(ds.GetStringValue("f(x) constraint-type", rIdx)));
    224       double[,] constraints = new double[constraintRows.Count(), parameters.Count + 1]; // +1 for constraint for f(x)
    225       string[,] comp = new string[constraintRows.Count(), parameters.Count + 1];
     227
     228      double[,] constraintX = new double[constraintRows.Count(), parameters.Count]; // inputs for constraint values
     229      double[,] constraints = new double[constraintRows.Count(), parameters.Count + 1]; // constraint values +1 column for constraint values for f(x)
     230      string[,] comp = new string[constraintRows.Count(), parameters.Count + 1]; // comparison types <= = >=
    226231      int eqConstraints = 0;
    227232      int ieqConstraints = 0;
     
    233238        var compColName = string.Format("df/d({0}) constraint-type", info.variableName);
    234239
    235         if (ds.VariableNames.Contains(colName)) {
    236           foreach (var r in constraintRows) {
     240        foreach (var r in constraintRows) {
     241          constraintX[row, col] = ds.GetDoubleValue(info.variableName, r);
     242          if (ds.VariableNames.Contains(colName)) {
    237243            constraints[row, col] = ds.GetDoubleValue(colName, r);
    238244            comp[row, col] = ds.GetStringValue(compColName, r);
     
    240246            if (comp[row, col] == "EQ") eqConstraints++;
    241247            else if (comp[row, col] == "LEQ" || comp[row, col] == "GEQ") ieqConstraints++;
    242 
    243             row++;
    244248          }
     249
     250          row++;
    245251        }
    246252        col++;
     
    260266      double[] y = ds.GetDoubleValues(problemData.TargetVariable, rows).ToArray();
    261267
    262       alglib.ndimensional_jac jac = CreateJac(x, y, ds, func);
    263       double rho = 1000;
     268      alglib.ndimensional_jac jac = CreateJac(x, y, constraintX, constraints, comp, func);
     269      double rho = 10000;
    264270      int outeriters = 3;
    265271      int updateFreq = 10;
     
    275281        alglib.minnlcsetscale(state, s);
    276282        alglib.minnlcsetprecexactlowrank(state, updateFreq);
    277         // TODO set constraints;
    278283        alglib.minnlcsetnlc(state, eqConstraints, ieqConstraints);
    279284        alglib.minnlcoptimize(state, jac, null, null);
     
    288293      //  -8  => integrity check failed (e.g. gradient NaN
    289294      if (rep.terminationtype != -7 && rep.terminationtype != -8)
    290         UpdateConstants(tree, c.Skip(2).ToArray(), updateVariableWeights);
     295        UpdateConstants(tree, c.ToArray(), updateVariableWeights);
     296      else {
     297        UpdateConstants(tree, Enumerable.Repeat(0.0, c.Length).ToArray(), updateVariableWeights);
     298      }
    291299      var quality = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(interpreter, tree, lowerEstimationLimit, upperEstimationLimit, problemData, rows, applyLinearScaling);
    292 
    293       if (!updateConstantsInTree) UpdateConstants(tree, originalConstants.Skip(2).ToArray(), updateVariableWeights);
     300      Console.WriteLine("{0:N4} {1:N4} {2} {3}", originalQuality, quality, state.fi.Skip(1).Where(fii => fii > 0).Count(), rep.terminationtype);
     301
     302      if (!updateConstantsInTree) UpdateConstants(tree, originalConstants.ToArray(), updateVariableWeights);
    294303      if (
    295304        // originalQuality - quality > 0.001 ||
    296305        double.IsNaN(quality)) {
    297         UpdateConstants(tree, originalConstants.Skip(2).ToArray(), updateVariableWeights);
     306        UpdateConstants(tree, originalConstants.ToArray(), updateVariableWeights);
    298307        return originalQuality;
    299308      }
     
    319328
    320329    private static alglib.ndimensional_jac CreateJac(
    321       double[,] x, // x is larger than y
     330      double[,] x, // x is same size as y
    322331      double[] y, // only targets
    323       // double[,] constraints, // df/d(xi), same order as for x, same number of rows as x less columns
    324       // string[,] comparison, // {LEQ, GEQ, EQ } same size as constraints
    325       IDataset ds,
     332      double[,] constraintX, // inputs for constraints
     333      double[,] constraints, // df/d(xi), same size as constraintX, same number of rows as x less columns
     334      string[,] comparison, // {LEQ, GEQ, EQ } same size as constraints
    326335      Func<DV, D> func) {
     336      Trace.Assert(x.GetLength(0) == y.Length);
     337      Trace.Assert(x.GetLength(1) == constraintX.GetLength(1) - 1);
     338      Trace.Assert(constraintX.GetLength(0) == constraints.GetLength(0));
     339      Trace.Assert(constraintX.GetLength(1) == constraints.GetLength(1));
     340      Trace.Assert(constraints.GetLength(0) == comparison.GetLength(0));
     341      Trace.Assert(constraints.GetLength(1) == comparison.GetLength(1));
    327342      return (double[] c, double[] fi, double[,] jac, object o) => {
    328343        // objective function is sum of squared errors
     
    350365
    351366        int fidx = 1;
    352         var constraintRows = Enumerable.Range(0, ds.Rows).Where(rIdx => !string.IsNullOrEmpty(ds.GetStringValue("f(x) constraint-type", rIdx)));
    353367
    354368        // eq constraints
    355         foreach (var rowIdx in constraintRows) {
    356           foreach (var varName in ds.VariableNames.Where(vn => vn.EndsWith("constraint-type"))) {
    357             if (ds.GetStringValue(varName, rowIdx) == "EQ") {
     369        for (int rowIdx = 0; rowIdx < constraintX.GetLength(0); rowIdx++) {
     370          for (var colIdx = 0; colIdx < constraintX.GetLength(1); colIdx++) {
     371            if (comparison[rowIdx, colIdx] == "EQ") {
    358372              throw new NotSupportedException();
    359373            }
     
    361375        }
    362376        // ineq constraints
    363         foreach (var rowIdx in constraintRows) {
    364 XXX
     377        for (int rowIdx = 0; rowIdx < constraintX.GetLength(0); rowIdx++) {
    365378          for (int colIdx = 0; colIdx < constraints.GetLength(1); colIdx++) {
    366379            // there is a constraint value
     
    369382              : comparison[rowIdx, colIdx] == "GEQ" ? -1.0 : 0.0;
    370383
     384              // copy x_i to the beginning of the function parameters vector
     385              for (int cIdx = 0; cIdx < nParams; cIdx++)
     386                p[cIdx] = constraintX[rowIdx, cIdx];
     387
    371388              // f(x) constraint
    372389              if (colIdx == constraints.GetLength(1) - 1) {
    373                 // copy x_i to the beginning of the function parameters vector
    374                 for (int cIdx = 0; cIdx < nParams; cIdx++)
    375                   p[cIdx] = x[rowIdx, cIdx];
    376390
    377391                fi[fidx] = factor * ((double)(func(p)) - constraints[rowIdx, colIdx]);
     
    385399                var g = (double[])AD.Grad(func, p);
    386400                fi[fidx] = factor * g[colIdx];
     401
    387402                var hess = AD.Hessian(func, p);
    388403                for (int jacIdx = 0; jacIdx < c.Length; jacIdx++) {
    389                   jac[fidx, jacIdx] = factor * (double)hess[nParams + colIdx, nParams + jacIdx]; // skip the elements for the variable values
     404                  jac[fidx, jacIdx] = factor * (double)hess[colIdx, nParams + jacIdx]; // skip the elements for the variable values
    390405                }
    391406                fidx++;
  • branches/MathNetNumerics-Exploration-2789/HeuristicLab.Algorithms.DataAnalysis.Experimental/TreeToDiffSharpConverter.cs

    r15313 r15322  
    306306      // }
    307307      if (node.Symbol is StartSymbol) {
    308         var alpha = Expression.Call(dv, DvIndexer, Expression.Constant(paramIdx++));
    309         var beta = Expression.Call(dv, DvIndexer, Expression.Constant(paramIdx++));
    310 
    311         return Expression.Call(d_Add_d, beta,
    312           Expression.Call(d_Mul_d, alpha, MakeExpr(node.GetSubtree(0), parameters, dv)));
     308        //var alpha = Expression.Call(dv, DvIndexer, Expression.Constant(paramIdx++));
     309        //var beta = Expression.Call(dv, DvIndexer, Expression.Constant(paramIdx++));
     310
     311        // return Expression.Call(d_Add_d, beta,
     312        //   Expression.Call(d_Mul_d, alpha, MakeExpr(node.GetSubtree(0), parameters, dv)));
     313        return MakeExpr(node.GetSubtree(0), parameters, dv);
    313314      }
    314315      throw new ConversionException();
Note: See TracChangeset for help on using the changeset viewer.