Free cookie consent management tool by TermsFeed Policy Generator

Ignore:
Timestamp:
07/10/17 19:16:40 (7 years ago)
Author:
gkronber
Message:

#2782: renamed remaining fields and properties referring to 'PredictiveProbability'

Location:
trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/GaussianProcess
Files:
2 edited

Legend:

Unmodified
Added
Removed
  • trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/GaussianProcess/GaussianProcessModelCreator.cs

    r14899 r15187  
    3737    private const string ModelParameterName = "Model";
    3838    private const string NegativeLogLikelihoodParameterName = "NegativeLogLikelihood";
    39     private const string NegativeLogPredictiveProbabilityParameterName = "NegativeLogPredictiveProbability (LOOCV)";
     39    private const string NegativeLogPseudoLikelihoodParameterName = "NegativeLogPseudoLikelihood (LOOCV)";
    4040    private const string HyperparameterGradientsParameterName = "HyperparameterGradients";
    4141    protected const string ScaleInputValuesParameterName = "ScaleInputValues";
     
    6262      get { return (ILookupParameter<DoubleValue>)Parameters[NegativeLogLikelihoodParameterName]; }
    6363    }
    64     public ILookupParameter<DoubleValue> NegativeLogPredictiveProbabilityParameter {
    65       get { return (ILookupParameter<DoubleValue>)Parameters[NegativeLogPredictiveProbabilityParameterName]; }
     64    public ILookupParameter<DoubleValue> NegativeLogPseudoLikelihoodParameter {
     65      get { return (ILookupParameter<DoubleValue>)Parameters[NegativeLogPseudoLikelihoodParameterName]; }
    6666    }
    6767    public ILookupParameter<BoolValue> ScaleInputValuesParameter {
     
    9090      Parameters.Add(new LookupParameter<RealVector>(HyperparameterGradientsParameterName, "The gradients of the hyperparameters for the produced Gaussian process model (necessary for hyperparameter optimization)"));
    9191      Parameters.Add(new LookupParameter<DoubleValue>(NegativeLogLikelihoodParameterName, "The negative log-likelihood of the produced Gaussian process model given the data."));
    92       Parameters.Add(new LookupParameter<DoubleValue>(NegativeLogPredictiveProbabilityParameterName, "The leave-one-out-cross-validation negative log predictive probability of the produced Gaussian process model given the data."));
     92      Parameters.Add(new LookupParameter<DoubleValue>(NegativeLogPseudoLikelihoodParameterName, "The leave-one-out-cross-validation negative log pseudo-likelihood of the produced Gaussian process model given the data."));
    9393
    9494
     
    105105        Parameters[ScaleInputValuesParameterName].Hidden = true;
    106106      }
    107       if (!Parameters.ContainsKey(NegativeLogPredictiveProbabilityParameterName)) {
    108         Parameters.Add(new LookupParameter<DoubleValue>(NegativeLogPredictiveProbabilityParameterName,
    109           "The leave-one-out-cross-validation negative log predictive probability of the produced Gaussian process model given the data."));
     107      if (!Parameters.ContainsKey(NegativeLogPseudoLikelihoodParameterName)) {
     108        Parameters.Add(new LookupParameter<DoubleValue>(NegativeLogPseudoLikelihoodParameterName,
     109          "The leave-one-out-cross-validation negative log pseudo-likelihood of the produced Gaussian process model given the data."));
    110110      }
    111111    }
  • trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/GaussianProcess/GaussianProcessRegressionModelCreator.cs

    r15160 r15187  
    6565        ModelParameter.ActualValue = model;
    6666        NegativeLogLikelihoodParameter.ActualValue = new DoubleValue(model.NegativeLogLikelihood);
    67         NegativeLogPredictiveProbabilityParameter.ActualValue = new DoubleValue(model.LooCvNegativeLogPseudoLikelihood);
     67        NegativeLogPseudoLikelihoodParameter.ActualValue = new DoubleValue(model.LooCvNegativeLogPseudoLikelihood);
    6868        HyperparameterGradientsParameter.ActualValue = new RealVector(model.HyperparameterGradients);
    6969        return base.Apply();
Note: See TracChangeset for help on using the changeset viewer.