- Timestamp:
- 06/26/17 09:10:56 (7 years ago)
- Location:
- branches/EfficientGlobalOptimization/HeuristicLab.Algorithms.EGO
- Files:
-
- 14 added
- 1 deleted
- 14 edited
Legend:
- Unmodified
- Added
- Removed
-
branches/EfficientGlobalOptimization/HeuristicLab.Algorithms.EGO/EfficientGlobalOptimizationAlgorithm.cs
r14833 r15064 24 24 using System.Linq; 25 25 using System.Threading; 26 using System.Windows.Forms;27 26 using HeuristicLab.Algorithms.DataAnalysis; 28 27 using HeuristicLab.Analysis; … … 35 34 using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; 36 35 using HeuristicLab.Problems.DataAnalysis; 37 using HeuristicLab.Problems.Instances.DataAnalysis; 38 using HeuristicLab.Problems.Instances.DataAnalysis.Views; 36 using HeuristicLab.Problems.Instances; 39 37 using HeuristicLab.Random; 40 38 … … 42 40 [StorableClass] 43 41 [Creatable(CreatableAttribute.Categories.Algorithms, Priority = 95)] 44 [Item("EfficientGlobalOptimizationAlgor tihm", "Solves a problem by sequentially learning a model, solving a subproblem on the model and evaluating the best found solution for this subproblem.")]42 [Item("EfficientGlobalOptimizationAlgorithm", "Solves a problem by sequentially learning a model, solving a subproblem on the model and evaluating the best found solution for this subproblem.")] 45 43 public class EfficientGlobalOptimizationAlgorithm : BasicAlgorithm, ISurrogateAlgorithm<RealVector> { 46 44 #region Basic-Alg-Essentials … … 84 82 #endregion 85 83 86 #region TransmissionResultNames87 public const string BestInfillSolutionResultName = "BestInfillSolution";88 public const string BestInfillQualityResultName = "BestInfillQuality";89 #endregion90 91 84 #region ParameterProperties 92 85 public IFixedValueParameter<IntValue> GenerationSizeParemeter => Parameters[GenerationSizeParameterName] as IFixedValueParameter<IntValue>; … … 108 101 109 102 #region Properties 110 111 103 public int GenerationSize => GenerationSizeParemeter.Value.Value; 112 104 public IInfillCriterion InfillCriterion => InfillCriterionParameter.Value; … … 123 115 ? Samples.Skip(Samples.Count - MaximalDatasetSize) 124 116 : Samples; 125 126 117 private bool RemoveDuplicates => RemoveDuplicatesParameter.Value.Value; 127 118 private RealVector BaselineVector => BaselineVectorParameter.Value; … … 161 152 private DataTable ResultsQualities => (DataTable)Results[QualitiesChartResultName].Value; 162 153 private DataRow ResultsQualitiesBest => ResultsQualities.Rows[BestQualitiesRowResultName]; 163 164 154 private DataRow ResultsQualitiesWorst => ResultsQualities.Rows[WorstQualitiesRowResultName]; 165 166 155 private DataRow ResultsQualitiesIteration => ResultsQualities.Rows[CurrentQualitiesRowResultName]; 167 168 156 private IRegressionSolution ResultsModel 169 157 { … … 177 165 protected EfficientGlobalOptimizationAlgorithm(bool deserializing) : base(deserializing) { } 178 166 [StorableHook(HookType.AfterDeserialization)] 179 pr ivatevoid AfterDeseialization() {167 protected void AfterDeseialization() { 180 168 RegisterEventhandlers(); 181 169 } 182 protected EfficientGlobalOptimizationAlgorithm(EfficientGlobalOptimizationAlgorithm original, Cloner cloner) 183 : base(original, cloner) { 170 protected EfficientGlobalOptimizationAlgorithm(EfficientGlobalOptimizationAlgorithm original, Cloner cloner) : base(original, cloner) { 184 171 Random = cloner.Clone(Random); 185 172 if (original.Samples != null) Samples = original.Samples.Select(x => new Tuple<RealVector, double>(cloner.Clone(x.Item1), x.Item2)).ToList(); 186 if (original.InitialSamples != null) Samples = original.InitialSamples.Select(x => new Tuple<RealVector, double>(cloner.Clone(x.Item1), x.Item2)).ToList();173 if (original.InitialSamples != null) InitialSamples = original.InitialSamples.Select(x => new Tuple<RealVector, double>(cloner.Clone(x.Item1), x.Item2)).ToList(); 187 174 RegisterEventhandlers(); 188 175 } 189 176 public override IDeepCloneable Clone(Cloner cloner) { return new EfficientGlobalOptimizationAlgorithm(this, cloner); } 190 177 public EfficientGlobalOptimizationAlgorithm() { 178 IProblemInstanceExporter dummy = new RegressionProblem(); //this variable is irrelevant 179 //the dummy variable enforces a using-Statement for HeuristicLab.Problems.Instances 180 //"new ValueParameter<IDataAnalysisAlgorithm<IRegressionProblem>>" requires no using using-Statement, but nontheless it requires HeuristicLab.Problems.Instances to be referenced 181 //Having HeuristicLab.Problems.Instances referenced but not used, causes the Essential-Unit-tests to fail. 182 191 183 var cmaes = new CMAEvolutionStrategy.CMAEvolutionStrategy { 192 184 MaximumGenerations = 300, … … 206 198 Parameters.Add(new FixedValueParameter<IntValue>(InfillOptimizationRestartsParameterName, "Number of restarts of the SubAlgortihm to avoid local optima", new IntValue(1))); 207 199 Parameters.Add(new FixedValueParameter<IntValue>(GenerationSizeParameterName, "Number points that are sampled every iteration (stadard EGO: 1)", new IntValue(1))); 208 Parameters.Add(new ConstrainedValueParameter<IInfillCriterion>(InfillCriterionParameterName, "Decision what value should decide the next sample"));209 InfillCriterionParameter.ValidValues.Add(new ExpectedImprovement());210 InfillCriterionParameter.ValidValues.Add(new AugmentedExpectedImprovement());211 InfillCriterionParameter.ValidValues.Add(new ExpectedQuality());212 var eqi = new ExpectedQuantileImprovement();213 InfillCriterionParameter.ValidValues.Add(eqi);214 eqi.MaxEvaluationsParameter.Value = MaximumEvaluationsParameter.Value;215 InfillCriterionParameter.ValidValues.Add(new MinimalQuantileCriterium());216 InfillCriterionParameter.ValidValues.Add(new RobustImprovement());217 InfillCriterionParameter.ValidValues.Add(new PluginExpectedImprovement());218 200 Parameters.Add(new FixedValueParameter<IntValue>(MaximalDataSetSizeParameterName, "The maximum number of sample points used to generate the model. Set 0 or less to use always all samples ", new IntValue(-1))); 219 201 Parameters.Add(new FixedValueParameter<BoolValue>(RemoveDuplicatesParamterName, "Wether duplicate samples should be replaced by a single sample with an averaged quality. This GREATLY decreases the chance of ill conditioned models (unbuildable models) but is not theoretically sound as the model ignores the increasing certainty in this region")); 220 202 Parameters.Add(new FixedValueParameter<FileValue>(InitialSamplesParameterName, "The file specifying some initial samples used to jump start the algorithm. These samples are not counted as evaluations. If InitialEvaluations is more than the samples specified in the file, the rest is uniformly random generated and evaluated.", new FileValue())); 221 203 Parameters.Add(new ValueParameter<RealVector>(BaselineVectorParameterName, "A vector used to create a baseline, this vector is evaluated once and is not part of the modeling process (has no influence on algorithm performance)")); 222 var intialSamplingPlans = new ItemSet<IInitialSampling> { new UniformRandomSampling(), new LatinHyperCubeDesign() }; 223 Parameters.Add(new ConstrainedValueParameter<IInitialSampling>(InitialSamplingPlanParamterName, intialSamplingPlans, intialSamplingPlans.First())); 224 204 var eqi = new ExpectedQuantileImprovement(); 205 eqi.MaxEvaluationsParameter.Value = MaximumEvaluationsParameter.Value; 206 var criteria = new ItemSet<IInfillCriterion> { new ExpectedImprovement(), new AugmentedExpectedImprovement(), new ExpectedQuality(), eqi, new MinimalQuantileCriterium(), new PluginExpectedImprovement() }; 207 Parameters.Add(new ConstrainedValueParameter<IInfillCriterion>(InfillCriterionParameterName, "Decision what value should decide the next sample", criteria, criteria.First())); 208 var intialSamplingPlans = new ItemSet<IInitialSampling> { new UniformRandomSampling(), new LatinHyperCubeDesignCreator() }; 209 Parameters.Add(new ConstrainedValueParameter<IInitialSampling>(InitialSamplingPlanParamterName, "Determies the initial samples from which the first model can be built.", intialSamplingPlans, intialSamplingPlans.First())); 225 210 SetInfillProblem(); 226 211 RegisterEventhandlers(); 227 212 } 228 213 #endregion 229 214 public void SetInitialSamples(RealVector[] individuals, double[] qualities) { 215 InitialSamples = individuals.Zip(qualities, (individual, d) => new Tuple<RealVector, double>(individual, d)).ToList(); 216 } 230 217 protected override void Initialize(CancellationToken cancellationToken) { 231 218 base.Initialize(cancellationToken); … … 235 222 var infillProblem = InfillOptimizationAlgorithm.Problem as InfillProblem; 236 223 if (infillProblem == null) throw new ArgumentException("InfillOptimizationAlgorithm has no InfillProblem. Troubles with Eventhandling?"); 237 infillProblem.Problem = Problem;238 239 224 240 225 //random … … 259 244 260 245 } 261 262 246 protected override void Run(CancellationToken cancellationToken) { 263 247 //initial samples … … 294 278 } 295 279 296 public void SetInitialSamples(RealVector[] individuals, double[] qualities) {297 InitialSamples = individuals.Zip(qualities, (individual, d) => new Tuple<RealVector, double>(individual, d)).ToList();298 }299 300 280 #region Eventhandling 301 281 private void RegisterEventhandlers() { … … 318 298 private void OnInfillOptimizationAlgorithmChanged(object sender, EventArgs args) { 319 299 SetInfillProblem(); 320 InfillOptimizationAlgorithm.ProblemChanged -= InfillOptimizationProblemChanged;321 300 InfillOptimizationAlgorithm.ProblemChanged += InfillOptimizationProblemChanged; 322 301 } … … 334 313 RegressionAlgorithm.Problem = new RegressionProblem(); 335 314 } 336 private void OnInitialSamplesChanged(object sender, EventArgs args) { 337 IRegressionProblemData samplesData = null; 338 using (var importTypeDialog = new RegressionImportTypeDialog()) { 339 if (importTypeDialog.ShowDialog() != DialogResult.OK) return; 340 samplesData = new RegressionCSVInstanceProvider().ImportData(importTypeDialog.Path, importTypeDialog.ImportType, importTypeDialog.CSVFormat); 341 InitialSamplesParameter.ToStringChanged -= OnInitialSamplesChanged; 342 InitialSamplesParameter.Value.Value = importTypeDialog.Path; 343 InitialSamplesParameter.ToStringChanged -= OnInitialSamplesChanged; 344 345 } 346 347 348 349 var solutions = new RealVector[samplesData.Dataset.Rows]; 350 var qualities = new double[samplesData.Dataset.Rows]; 351 var inputVariables = samplesData.InputVariables.CheckedItems.ToArray(); 352 for (var i = 0; i < solutions.Length; i++) { 353 qualities[i] = samplesData.Dataset.GetDoubleValue(samplesData.TargetVariable, i); 354 solutions[i] = new RealVector(inputVariables.Length); 355 for (var j = 0; j < inputVariables.Length; j++) solutions[i][j] = samplesData.Dataset.GetDoubleValue(inputVariables[j].Value.Value, i); 356 } 357 358 SetInitialSamples(solutions, qualities); 359 360 } 361 315 private void OnInitialSamplesChanged(object sender, EventArgs args) { } 362 316 protected override void OnExecutionTimeChanged() { 363 317 base.OnExecutionTimeChanged(); … … 376 330 base.Stop(); 377 331 } 378 protected override void OnProblemChanged() {379 base.OnProblemChanged();380 var infillProblem = InfillOptimizationAlgorithm.Problem as InfillProblem;381 if (infillProblem == null) throw new ArgumentException("InfillOptimizationAlgorithm has no InfillProblem. Troubles with Eventhandling?");382 infillProblem.Problem = Problem;383 }384 332 #endregion 385 333 386 334 #region helpers 387 private void SetInfillProblem() {388 var infillProblem = new InfillProblem {389 InfillCriterion = InfillCriterion,390 Problem = Problem391 };392 InfillOptimizationAlgorithm.Problem = infillProblem;393 }394 335 private IRegressionSolution BuildModel(CancellationToken cancellationToken) { 395 336 var dataset = EgoUtilities.GetDataSet(DataSamples.ToList(), RemoveDuplicates); … … 406 347 IRegressionSolution solution = null; 407 348 408 while (solution == null && i++ < 100) { //TODO: Question: Why does GP degenerate to NaN so often? Answer: There is not even the slightest mitigation strategy for "almost duplicates" that ill-condition the covariance matrix.349 while (solution == null && i++ < 100) { 409 350 var results = EgoUtilities.SyncRunSubAlgorithm(RegressionAlgorithm, Random.Next(int.MaxValue)); 410 351 solution = results.Select(x => x.Value).OfType<IRegressionSolution>().SingleOrDefault(); … … 451 392 //parameterize and check InfillProblem 452 393 var infillProblem = InfillOptimizationAlgorithm.Problem as InfillProblem; 453 if (infillProblem == null) throw new ArgumentException("InfillOptimizationAlgorithm does not have InfillProblem. Problem with Eventhandling?"); 454 if (infillProblem.InfillCriterion != InfillCriterion) throw new ArgumentException("InfillCiriterion for Problem is not correct. Problem with Eventhandling?"); 455 if (infillProblem.Problem != Problem) throw new ArgumentException("Expensive real problem is not correctly set in InfillProblem. Problem with Eventhandling?"); 456 InfillCriterion.Initialize(ResultsModel, Problem.Maximization, infillProblem.Encoding); 394 if (infillProblem == null) throw new ArgumentException("InfillOptimizationAlgorithm does not have an InfillProblem."); 395 if (infillProblem.InfillCriterion != InfillCriterion) throw new ArgumentException("InfillCiriterion for Problem is not correctly set."); 396 var enc = Problem.Encoding as RealVectorEncoding; 397 infillProblem.Encoding.Bounds = enc.Bounds; 398 infillProblem.Encoding.Length = enc.Length; 399 infillProblem.Initialize(ResultsModel, Problem.Maximization); 400 401 457 402 458 403 RealVector bestVector = null; 459 404 var bestValue = infillProblem.Maximization ? double.NegativeInfinity : double.PositiveInfinity; 460 461 405 for (var i = 0; i < InfillOptimizationRestarts; i++) { 462 406 //optimize … … 464 408 cancellationToken.ThrowIfCancellationRequested(); 465 409 //extract results 466 if (!res.ContainsKey( BestInfillSolutionResultName)) throw new ArgumentException("The InfillOptimizationAlgorithm did not return a best solution");467 var v = res[ BestInfillSolutionResultName].Value as RealVector;468 if (!res.ContainsKey( BestInfillQualityResultName)) throw new ArgumentException("The InfillOptimizationAlgorithm did not return a best quality");469 var d = res[ BestInfillQualityResultName].Value as DoubleValue;410 if (!res.ContainsKey(InfillProblem.BestInfillSolutionResultName)) throw new ArgumentException("The InfillOptimizationAlgorithm did not return a best solution"); 411 var v = res[InfillProblem.BestInfillSolutionResultName].Value as RealVector; 412 if (!res.ContainsKey(InfillProblem.BestInfillQualityResultName)) throw new ArgumentException("The InfillOptimizationAlgorithm did not return a best quality"); 413 var d = res[InfillProblem.BestInfillQualityResultName].Value as DoubleValue; 470 414 if (d == null || v == null) throw new ArgumentException("The InfillOptimizationAlgorithm did not return the expected result types"); 471 472 415 //check for improvement 473 416 if (infillProblem.Maximization != d.Value > bestValue) continue; … … 475 418 bestVector = v; 476 419 } 477 478 420 InfillOptimizationAlgorithm.Runs.Clear(); 479 421 return bestVector; 480 422 } 481 private Tuple<RealVector, double> Evaluate(RealVector point) { 482 return new Tuple<RealVector, double>(point, Problem.Evaluate(GetIndividual(point), Random)); 483 } 423 484 424 private void Analyze() { 485 425 ResultsEvaluations = Samples.Count; … … 493 433 ResultsQualitiesWorst.Values.Add(Samples[Problem.Maximization ? min : max].Item2); 494 434 Problem.Analyze(Samples.Select(x => GetIndividual(x.Item1)).ToArray(), Samples.Select(x => x.Item2).ToArray(), Results, Random); 495 496 if (Samples.Count != 0 && Samples[0].Item1.Length == 2) { 497 var plotname = "DEBUG:Sample Distribution"; 498 var rowInit = "Initial Samples"; 499 var rowAll = "All Samples"; 500 if (!Results.ContainsKey(plotname)) Results.Add(new Result(plotname, new ScatterPlot())); 501 var plot = Results[plotname].Value as ScatterPlot; 502 if (!plot.Rows.ContainsKey(rowInit) && InitialSamples != null && InitialSamples.Count > 0) 503 plot.Rows.Add(new ScatterPlotDataRow(rowInit, "samples from inital file (already evaulated)", InitialSamples.Select(x => new Point2D<double>(x.Item1[0], x.Item1[1])))); 504 if (!plot.Rows.ContainsKey(rowAll)) plot.Rows.Add(new ScatterPlotDataRow(rowAll, "All samples", new Point2D<double>[0])); 505 else { plot.Rows[rowAll].Points.Clear(); } 506 plot.Rows[rowAll].Points.AddRange(Samples.Select(x => new Point2D<double>(x.Item1[0], x.Item1[1]))); 507 508 509 } 510 } 435 if (Samples.Count != 0 && Samples[0].Item1.Length == 2) AnalyzeSampleDistribution(); 436 AnalyzePredictionCorrelation(); 437 } 438 439 private void AnalyzeSampleDistribution() { 440 const string plotname = "DEBUG:Sample Distribution"; 441 const string rowInit = "Initial Samples"; 442 const string rowAll = "All Samples"; 443 if (!Results.ContainsKey(plotname)) Results.Add(new Result(plotname, new ScatterPlot())); 444 var plot = (ScatterPlot)Results[plotname].Value; 445 if (!plot.Rows.ContainsKey(rowInit) && InitialSamples != null && InitialSamples.Count > 0) 446 plot.Rows.Add(new ScatterPlotDataRow(rowInit, "samples from inital file (already evaulated)", InitialSamples.Select(x => new Point2D<double>(x.Item1[0], x.Item1[1])))); 447 if (!plot.Rows.ContainsKey(rowAll)) plot.Rows.Add(new ScatterPlotDataRow(rowAll, "All samples", new Point2D<double>[0])); 448 else { plot.Rows[rowAll].Points.Clear(); } 449 plot.Rows[rowAll].Points.AddRange(Samples.Select(x => new Point2D<double>(x.Item1[0], x.Item1[1]))); 450 } 451 452 private void AnalyzePredictionCorrelation() { 453 const string plotName = "Prediction"; 454 const string rowName = "Samples"; 455 const string lastrowName = "Last Sample"; 456 if (!Results.ContainsKey(plotName)) Results.Add(new Result(plotName, new ScatterPlot())); 457 var plot = (ScatterPlot)Results[plotName].Value; 458 if (!plot.Rows.ContainsKey(rowName)) plot.Rows.Add(new ScatterPlotDataRow(rowName, rowName, new List<Point2D<double>>())); 459 if (!plot.Rows.ContainsKey(lastrowName)) plot.Rows.Add(new ScatterPlotDataRow(lastrowName, lastrowName, new List<Point2D<double>>())); 460 var p = Samples[Samples.Count - 1]; 461 if (ResultsModel != null) plot.Rows[rowName].Points.Add(new Point2D<double>(ResultsModel.Model.GetEstimation(p.Item1), p.Item2, p.Item1)); 462 plot.VisualProperties.YAxisTitle = "True Objective Value"; 463 plot.VisualProperties.XAxisTitle = "Predicted Objective Value"; 464 465 } 466 511 467 private Individual GetIndividual(RealVector r) { 512 468 var scope = new Scope(); … … 514 470 return new SingleEncodingIndividual(Problem.Encoding, scope); 515 471 } 472 private Tuple<RealVector, double> Evaluate(RealVector point) { 473 return new Tuple<RealVector, double>(point, Problem.Evaluate(GetIndividual(point), Random)); 474 } 475 476 private void SetInfillProblem() { 477 InfillOptimizationAlgorithm.Problem = new InfillProblem { InfillCriterion = InfillCriterion }; 478 } 516 479 #endregion 517 480 } -
branches/EfficientGlobalOptimization/HeuristicLab.Algorithms.EGO/EgoUtilities.cs
r14833 r15064 25 25 using System.Threading; 26 26 using HeuristicLab.Common; 27 using HeuristicLab.Core; 27 28 using HeuristicLab.Data; 28 29 using HeuristicLab.Encodings.RealVectorEncoding; … … 32 33 namespace HeuristicLab.Algorithms.EGO { 33 34 internal static class EgoUtilities { 35 //Extention methods for convenience 34 36 public static int ArgMax<T>(this IEnumerable<T> values, Func<T, double> func) { 35 37 var max = double.MinValue; … … 49 51 return ArgMax(values, x => -func.Invoke(x)); 50 52 } 53 public static double GetEstimation(this IRegressionModel model, RealVector r) { 54 var dataset = GetDataSet(new[] { new Tuple<RealVector, double>(r, 0.0) }, false); 55 return model.GetEstimatedValues(dataset, new[] { 0 }).First(); 56 } 57 public static double GetVariance(this IConfidenceRegressionModel model, RealVector r) { 58 var dataset = GetDataSet(new[] { new Tuple<RealVector, double>(r, 0.0) }, false); 59 return model.GetEstimatedVariances(dataset, new[] { 0 }).First(); 60 } 61 public static double GetDoubleValue(this IDataset dataset, int i, int j) { 62 return dataset.GetDoubleValue("input" + j, i); 63 } 51 64 65 //Sub-ALgorithms 52 66 public static ResultCollection SyncRunSubAlgorithm(IAlgorithm alg, int random) { 53 67 … … 64 78 EventWaitHandle trigger = new AutoResetEvent(false); 65 79 Exception ex = null; 66 EventHandler<EventArgs<Exception>> exhandler = (sender, e) => ex = e.Value;80 EventHandler<EventArgs<Exception>> exhandler = (sender, e) => { ex = e.Value; trigger.Set(); }; 67 81 EventHandler stoppedHandler = (sender, e) => trigger.Set(); 82 83 alg.ExceptionOccurred -= exhandler; //avoid double attaching in case of pause 68 84 alg.ExceptionOccurred += exhandler; 85 alg.Stopped -= stoppedHandler; 69 86 alg.Stopped += stoppedHandler; 70 alg.Prepare(); 87 alg.Paused -= stoppedHandler; 88 alg.Paused += stoppedHandler; 89 90 if (alg.ExecutionState != ExecutionState.Paused) alg.Prepare(); 71 91 alg.Start(); 72 92 trigger.WaitOne(); … … 77 97 } 78 98 79 public static double GetEstimation(this IRegressionModel model, RealVector r) { 80 var dataset = GetDataSet(new[] { new Tuple<RealVector, double>(r, 0.0) }, false); 81 return model.GetEstimatedValues(dataset, new[] { 0 }).First(); 82 } 83 public static double GetVariance(this IConfidenceRegressionModel model, RealVector r) { 84 var dataset = GetDataSet(new[] { new Tuple<RealVector, double>(r, 0.0) }, false); 85 return model.GetEstimatedVariances(dataset, new[] { 0 }).First(); 86 } 87 88 89 public static double GetDoubleValue(this IDataset dataset, int i, int j) { 90 return dataset.GetDoubleValue("input" + j, i); 91 } 99 //RegressionModel extensions 100 public const double DuplicateResolution = 0.0001; 92 101 public static Dataset GetDataSet(IReadOnlyList<Tuple<RealVector, double>> samples, bool removeDuplicates) { 93 if (removeDuplicates) 94 samples = RemoveDuplicates(samples); //TODO duplicates require heteroskedasticity in Models 95 96 102 if (removeDuplicates) samples = RemoveDuplicates(samples); //TODO duplicate removal leads to incorrect uncertainty values in models 97 103 var dimensions = samples[0].Item1.Length + 1; 98 104 var data = new double[samples.Count, dimensions]; 99 105 var names = new string[dimensions - 1]; 100 106 for (var i = 0; i < names.Length; i++) names[i] = "input" + i; 101 102 107 for (var j = 0; j < samples.Count; j++) { 103 108 for (var i = 0; i < names.Length; i++) data[j, i] = samples[j].Item1[i]; 104 109 data[j, dimensions - 1] = samples[j].Item2; 105 106 110 } 107 108 109 111 return new Dataset(names.Concat(new[] { "output" }).ToArray(), data); 110 112 } 111 112 113 private static IReadOnlyList<Tuple<RealVector, double>> RemoveDuplicates(IReadOnlyList<Tuple<RealVector, double>> samples) { 113 114 var res = new List<Tuple<RealVector, double, int>>(); 114 115 115 foreach (var sample in samples) { 116 116 if (res.Count == 0) { … … 118 118 continue; 119 119 } 120 121 120 var index = res.ArgMin(x => Euclidian(sample.Item1, x.Item1)); 122 121 var d = Euclidian(res[index].Item1, sample.Item1); 123 if (d > 0.0001)122 if (d > DuplicateResolution) 124 123 res.Add(new Tuple<RealVector, double, int>(sample.Item1, sample.Item2, 1)); 125 124 else { … … 131 130 return res.Select(x => new Tuple<RealVector, double>(x.Item1, x.Item2 / x.Item3)).ToArray(); 132 131 } 133 134 132 private static double Euclidian(IEnumerable<double> a, IEnumerable<double> b) { 135 133 return Math.Sqrt(a.Zip(b, (d, d1) => d - d1).Sum(d => d * d)); 136 134 } 137 138 public static DoubleMatrix GetBoundingBox(IEnumerable<RealVector> vectors) {139 DoubleMatrix res = null;140 foreach (var vector in vectors)141 if (res == null) {142 res = new DoubleMatrix(vector.Length, 2);143 for (var i = 0; i < vector.Length; i++)144 res[i, 0] = res[i, 1] = vector[i];145 } else146 for (var i = 0; i < vector.Length; i++) {147 res[i, 0] = Math.Min(vector[i], res[i, 0]);148 res[i, 1] = Math.Max(vector[i], res[i, 1]);149 }150 return res;151 }152 153 154 135 } 155 136 } -
branches/EfficientGlobalOptimization/HeuristicLab.Algorithms.EGO/HeuristicLab.Algorithms.EGO-3.4.csproj
r14833 r15064 39 39 <HintPath>..\..\..\trunk\sources\bin\HeuristicLab.Algorithms.DataAnalysis-3.4.dll</HintPath> 40 40 </Reference> 41 <Reference Include="HeuristicLab.Algorithms.EvolutionStrategy-3.3, Version=3.3.0.0, Culture=neutral, PublicKeyToken=ba48961d6f65dcec, processorArchitecture=MSIL">42 <SpecificVersion>False</SpecificVersion>43 <HintPath>..\..\..\trunk\sources\bin\HeuristicLab.Algorithms.EvolutionStrategy-3.3.dll</HintPath>44 </Reference>45 41 <Reference Include="HeuristicLab.Analysis-3.3, Version=3.3.0.0, Culture=neutral, PublicKeyToken=ba48961d6f65dcec, processorArchitecture=MSIL"> 46 42 <SpecificVersion>False</SpecificVersion> … … 55 51 <HintPath>..\..\..\trunk\sources\bin\HeuristicLab.Common-3.3.dll</HintPath> 56 52 </Reference> 57 <Reference Include="HeuristicLab.Common.Resources-3.3, Version=3.3.0.0, Culture=neutral, PublicKeyToken=ba48961d6f65dcec, processorArchitecture=MSIL">58 <SpecificVersion>False</SpecificVersion>59 <HintPath>..\..\..\trunk\sources\bin\HeuristicLab.Common.Resources-3.3.dll</HintPath>60 </Reference>61 53 <Reference Include="HeuristicLab.Core-3.3, Version=3.3.0.0, Culture=neutral, PublicKeyToken=ba48961d6f65dcec, processorArchitecture=MSIL"> 62 54 <SpecificVersion>False</SpecificVersion> … … 66 58 <SpecificVersion>False</SpecificVersion> 67 59 <HintPath>..\..\..\trunk\sources\bin\HeuristicLab.Data-3.3.dll</HintPath> 60 </Reference> 61 <Reference Include="HeuristicLab.Encodings.PermutationEncoding-3.3, Version=3.3.0.0, Culture=neutral, PublicKeyToken=ba48961d6f65dcec, processorArchitecture=MSIL"> 62 <SpecificVersion>False</SpecificVersion> 63 <HintPath>..\..\..\trunk\sources\bin\HeuristicLab.Encodings.PermutationEncoding-3.3.dll</HintPath> 68 64 </Reference> 69 65 <Reference Include="HeuristicLab.Encodings.RealVectorEncoding-3.3, Version=3.3.0.0, Culture=neutral, PublicKeyToken=ba48961d6f65dcec, processorArchitecture=MSIL"> … … 75 71 <SpecificVersion>False</SpecificVersion> 76 72 <HintPath>..\..\..\trunk\sources\bin\HeuristicLab.Optimization-3.3.dll</HintPath> 73 </Reference> 74 <Reference Include="HeuristicLab.Optimization.Operators-3.3, Version=3.3.0.0, Culture=neutral, PublicKeyToken=ba48961d6f65dcec, processorArchitecture=MSIL"> 75 <SpecificVersion>False</SpecificVersion> 76 <HintPath>..\..\..\trunk\sources\bin\HeuristicLab.Optimization.Operators-3.3.dll</HintPath> 77 77 </Reference> 78 78 <Reference Include="HeuristicLab.Parameters-3.3, Version=3.3.0.0, Culture=neutral, PublicKeyToken=ba48961d6f65dcec, processorArchitecture=MSIL"> … … 92 92 <HintPath>..\..\..\trunk\sources\bin\HeuristicLab.Problems.DataAnalysis-3.4.dll</HintPath> 93 93 </Reference> 94 <Reference Include="HeuristicLab.Problems.Instances-3.3, Version=3.3.0.0, Culture=neutral, PublicKeyToken=ba48961d6f65dcec, processorArchitecture=MSIL"> 94 <Reference Include="HeuristicLab.Problems.Instances-3.3, Version=3.3.0.0, Culture=neutral, PublicKeyToken=ba48961d6f65dcec" /> 95 <Reference Include="HeuristicLab.Problems.SurrogateProblem-3.3, Version=3.3.0.0, Culture=neutral, processorArchitecture=MSIL"> 95 96 <SpecificVersion>False</SpecificVersion> 96 <HintPath>..\..\..\trunk\sources\bin\HeuristicLab.Problems.Instances-3.3.dll</HintPath> 97 </Reference> 98 <Reference Include="HeuristicLab.Problems.Instances.DataAnalysis-3.3, Version=3.3.0.0, Culture=neutral, PublicKeyToken=ba48961d6f65dcec, processorArchitecture=MSIL"> 99 <SpecificVersion>False</SpecificVersion> 100 <HintPath>..\..\..\trunk\sources\bin\HeuristicLab.Problems.Instances.DataAnalysis-3.3.dll</HintPath> 101 </Reference> 102 <Reference Include="HeuristicLab.Problems.Instances.DataAnalysis.Views-3.3, Version=3.3.0.0, Culture=neutral, PublicKeyToken=ba48961d6f65dcec, processorArchitecture=MSIL"> 103 <SpecificVersion>False</SpecificVersion> 104 <HintPath>..\..\..\trunk\sources\bin\HeuristicLab.Problems.Instances.DataAnalysis.Views-3.3.dll</HintPath> 97 <HintPath>..\..\..\trunk\sources\bin\HeuristicLab.Problems.SurrogateProblem-3.3.dll</HintPath> 105 98 </Reference> 106 99 <Reference Include="HeuristicLab.Random-3.3, Version=3.3.0.0, Culture=neutral, PublicKeyToken=ba48961d6f65dcec, processorArchitecture=MSIL"> … … 108 101 <HintPath>..\..\..\trunk\sources\bin\HeuristicLab.Random-3.3.dll</HintPath> 109 102 </Reference> 103 <Reference Include="Microsoft.Build.Tasks.v4.0" /> 110 104 <Reference Include="System" /> 111 105 <Reference Include="System.Core" /> 112 <Reference Include="System.Windows.Forms" />113 <Reference Include="System.Xml.Linq" />114 <Reference Include="System.Data.DataSetExtensions" />115 106 <Reference Include="Microsoft.CSharp" /> 116 <Reference Include="System.Data" />117 <Reference Include="System.Net.Http" />118 <Reference Include="System.Xml" />119 107 </ItemGroup> 120 108 <ItemGroup> … … 122 110 <Compile Include="EfficientGlobalOptimizationAlgorithm.cs" /> 123 111 <Compile Include="InfillCriteria\AugmentedExpectedImprovement.cs" /> 112 <Compile Include="InfillCriteria\ExpectedImprovementBase.cs" /> 113 <Compile Include="InfillCriteria\NeighbourDistance.cs" /> 124 114 <Compile Include="InfillCriteria\ExpectedQuantileImprovement.cs" /> 125 115 <Compile Include="InfillCriteria\PluginExpectedImprovement.cs" /> 126 <Compile Include="InfillCriteria\RobustImprovement.cs" />127 116 <Compile Include="InfillCriteria\MinimalQuantileCriterium.cs" /> 128 117 <Compile Include="InfillCriteria\ExpectedQuality.cs" /> … … 132 121 <Compile Include="Interfaces\ISurrogateAlgorithm.cs" /> 133 122 <Compile Include="Interfaces\IInfillCriterion.cs" /> 123 <Compile Include="AdaptiveSamplingAlgorithm.cs" /> 124 <Compile Include="Operators\FitnessClusteringAnalyzer.cs" /> 125 <Compile Include="Operators\VariableVariabilityAnalyzer.cs" /> 126 <Compile Include="Operators\ModelQualityAnalyzer.cs" /> 127 <Compile Include="Operators\EvaluatedSolutionsAnalyzer.cs" /> 128 <Compile Include="Operators\ModelBuilder.cs" /> 129 <Compile Include="Operators\InfillSolver.cs" /> 130 <Compile Include="Operators\CorrelationAnalyzer.cs" /> 131 <Compile Include="Operators\SampleCollector.cs" /> 134 132 <Compile Include="Plugin.cs" /> 135 133 <Compile Include="Problems\InfillProblem.cs" /> 136 134 <Compile Include="Properties\AssemblyInfo.cs" /> 137 <Compile Include="SamplingMethods\LatinHyperCubeDesign.cs" /> 135 <Compile Include="SamplingMethods\LatinHyperCubeDesignOLD.cs" /> 136 <Compile Include="SamplingMethods\LatinHyperCubeDesignCreator.cs" /> 138 137 <Compile Include="SamplingMethods\UniformRandomSampling.cs" /> 139 138 </ItemGroup> … … 142 141 <None Include="Properties\AssemblyInfo.cs.frame" /> 143 142 </ItemGroup> 144 <ItemGroup> 145 <WCFMetadata Include="Service References\" /> 146 </ItemGroup> 143 <ItemGroup /> 147 144 <Import Project="$(MSBuildToolsPath)\Microsoft.CSharp.targets" /> 148 145 <PropertyGroup> -
branches/EfficientGlobalOptimization/HeuristicLab.Algorithms.EGO/InfillCriteria/AugmentedExpectedImprovement.cs
r14818 r15064 35 35 [StorableClass] 36 36 [Item("AugmentedExpectedImprovement", "Noisy InfillCriterion, Extension of the Expected Improvement as described in\n Global optimization of stochastic black-box systems via sequential kriging meta-models.\r\nHuang, D., Allen, T., Notz, W., Zeng, N.")] 37 public class AugmentedExpectedImprovement : ExpectedImprovement { 38 39 37 public class AugmentedExpectedImprovement : ExpectedImprovementBase { 40 38 41 39 #region Parameternames 42 43 40 public const string AlphaParameterName = "Alpha"; 44 45 41 #endregion 46 42 47 43 #region Parameters 48 49 44 public IValueParameter<DoubleValue> AlphaParameter => Parameters[AlphaParameterName] as IValueParameter<DoubleValue>; 50 51 45 #endregion 52 46 53 47 #region Properties 54 55 48 public double Alpha => AlphaParameter.Value.Value; 56 49 [Storable] 57 50 private double Tau; 58 59 51 #endregion 60 52 61 62 #region HL-Constructors, Serialization and Cloning 53 #region Constructors, Serialization and Cloning 63 54 [StorableConstructor] 64 private AugmentedExpectedImprovement(bool deserializing) : base(deserializing) { } 65 66 private AugmentedExpectedImprovement(AugmentedExpectedImprovement original, Cloner cloner) : base(original, cloner) { 55 protected AugmentedExpectedImprovement(bool deserializing) : base(deserializing) { } 56 protected AugmentedExpectedImprovement(AugmentedExpectedImprovement original, Cloner cloner) : base(original, cloner) { 67 57 Tau = original.Tau; 68 58 } 69 70 59 public AugmentedExpectedImprovement() { 71 60 Parameters.Add(new ValueParameter<DoubleValue>(AlphaParameterName, "The Alpha value specifiying the robustness of the \"effective best solution\". Recommended value is 1", new DoubleValue(1.0))); 72 73 61 } 74 62 public override IDeepCloneable Clone(Cloner cloner) { … … 82 70 } 83 71 84 protected override void Initialize() {85 if (ExpensiveMaximization) throw new NotImplementedException("AugmentedExpectedImprovement for maximization not yet implemented");86 var solution = RegressionSolution as IConfidenceRegressionSolution;87 if (solution == null) throw new ArgumentException("can not calculate Augmented EI without a regression solution providing confidence values");72 protected override double Evaluate(RealVector vector, double estimatedFitness, double estimatedStandardDeviation) { 73 var d = GetEstimatedImprovement(BestFitness, estimatedFitness, estimatedStandardDeviation, ExploitationWeight, ExpensiveMaximization); 74 return d * (1 - Tau / Math.Sqrt(estimatedStandardDeviation * estimatedStandardDeviation + Tau * Tau)); 75 } 88 76 77 protected override double FindBestFitness(IConfidenceRegressionSolution solution) { 89 78 Tau = RegressionSolution.EstimatedTrainingValues.Zip(RegressionSolution.ProblemData.TargetVariableTrainingValues, (d, d1) => Math.Abs(d - d1)).Average(); 90 var xss= new RealVector(Encoding.Length);79 var bestSolution = new RealVector(Encoding.Length); 91 80 var xssIndex = solution.EstimatedTrainingValues.Zip(solution.EstimatedTrainingValues, (m, s2) => m + Alpha * Math.Sqrt(s2)).ArgMin(x => x); 92 81 var i = solution.ProblemData.TrainingIndices.ToArray()[xssIndex]; 93 for (var j = 0; j < Encoding.Length; j++) xss[j] = solution.ProblemData.Dataset.GetDoubleValue(i, j); 94 95 YMin = RegressionSolution.Model.GetEstimation(xss); 82 for (var j = 0; j < Encoding.Length; j++) bestSolution[j] = solution.ProblemData.Dataset.GetDoubleValue(i, j); 83 return RegressionSolution.Model.GetEstimation(bestSolution); 96 84 } 97 85 } -
branches/EfficientGlobalOptimization/HeuristicLab.Algorithms.EGO/InfillCriteria/ExpectedImprovement.cs
r14818 r15064 24 24 using HeuristicLab.Common; 25 25 using HeuristicLab.Core; 26 using HeuristicLab.Data;27 26 using HeuristicLab.Encodings.RealVectorEncoding; 28 using HeuristicLab.Parameters;29 27 using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; 30 28 using HeuristicLab.Problems.DataAnalysis; … … 35 33 [StorableClass] 36 34 [Item("ExpectedImprovementMeassure", "Extension of the Expected Improvement to a weighted version by ANDRAS SÓBESTER , STEPHEN J. LEARY and ANDY J. KEANE in \n On the Design of Optimization Strategies Based on Global Response Surface Approximation Models")] 37 public class ExpectedImprovement : InfillCriterionBase { 38 39 #region ParameterNames 40 private const string ExploitationWeightParameterName = "ExploitationWeight"; 41 #endregion 42 43 #region ParameterProperties 44 public IFixedValueParameter<DoubleValue> ExploitationWeightParameter => Parameters[ExploitationWeightParameterName] as IFixedValueParameter<DoubleValue>; 45 46 #endregion 47 48 #region Properties 49 protected double ExploitationWeight => ExploitationWeightParameter.Value.Value; 50 51 [Storable] 52 protected double YMin; 53 #endregion 54 55 #region HL-Constructors, Serialization and Cloning 35 public sealed class ExpectedImprovement : ExpectedImprovementBase { 36 #region Constructors, Serialization and Cloning 56 37 [StorableConstructor] 57 protected ExpectedImprovement(bool deserializing) : base(deserializing) { } 58 [StorableHook(HookType.AfterDeserialization)] 59 private void AfterDeserialization() { 60 RegisterEventhandlers(); 61 } 62 protected ExpectedImprovement(ExpectedImprovement original, Cloner cloner) : base(original, cloner) { 63 RegisterEventhandlers(); 64 } 65 public ExpectedImprovement() { 66 Parameters.Add(new FixedValueParameter<DoubleValue>(ExploitationWeightParameterName, "A value between 0 and 1 indicating the focus on exploration (0) or exploitation (1)", new DoubleValue(0.5))); 67 RegisterEventhandlers(); 68 } 38 private ExpectedImprovement(bool deserializing) : base(deserializing) { } 39 private ExpectedImprovement(ExpectedImprovement original, Cloner cloner) : base(original, cloner) { } 40 public ExpectedImprovement() { } 69 41 public override IDeepCloneable Clone(Cloner cloner) { 70 42 return new ExpectedImprovement(this, cloner); … … 76 48 var yhat = model.GetEstimation(vector); 77 49 var s = Math.Sqrt(model.GetVariance(vector)); 78 return GetEstimatedImprovement( YMin, yhat, s, ExploitationWeight);50 return GetEstimatedImprovement(BestFitness, yhat, s, ExploitationWeight, ExpensiveMaximization); 79 51 } 80 52 81 p ublic override bool Maximization() {82 return true;53 protected override double Evaluate(RealVector vector, double estimatedFitness, double estimatedStandardDeviation) { 54 return GetEstimatedImprovement(BestFitness, estimatedFitness, estimatedStandardDeviation, ExploitationWeight, ExpensiveMaximization); 83 55 } 84 56 85 protected override void Initialize() { 86 if (ExpensiveMaximization) throw new NotImplementedException("Expected Improvement for maximization not yet implemented"); 87 var model = RegressionSolution.Model as IConfidenceRegressionModel; 88 if (model == null) throw new ArgumentException("can not calculate EI without confidence measure"); 89 YMin = RegressionSolution.ProblemData.TargetVariableTrainingValues.Min(); 57 protected override double FindBestFitness(IConfidenceRegressionSolution solution) { 58 return ExpensiveMaximization ? solution.ProblemData.TargetVariableTrainingValues.Max() : solution.ProblemData.TargetVariableTrainingValues.Min(); 90 59 } 91 92 #region Eventhandling93 private void RegisterEventhandlers() {94 DeregisterEventhandlers();95 ExploitationWeightParameter.Value.ValueChanged += OnExploitationWeightChanged;96 }97 private void DeregisterEventhandlers() {98 ExploitationWeightParameter.Value.ValueChanged -= OnExploitationWeightChanged;99 }100 private void OnExploitationWeightChanged(object sender, EventArgs e) {101 ExploitationWeightParameter.Value.ValueChanged -= OnExploitationWeightChanged;102 ExploitationWeightParameter.Value.Value = Math.Max(0, Math.Min(ExploitationWeight, 1));103 ExploitationWeightParameter.Value.ValueChanged += OnExploitationWeightChanged;104 }105 #endregion106 107 #region Helpers108 protected static double GetEstimatedImprovement(double ymin, double yhat, double s, double w) {109 if (Math.Abs(s) < double.Epsilon) return 0;110 var val = (ymin - yhat) / s;111 var res = w * (ymin - yhat) * StandardNormalDistribution(val) + (1 - w) * s * StandardNormalDensity(val);112 return double.IsInfinity(res) || double.IsNaN(res) ? 0 : res;113 }114 115 private static double StandardNormalDensity(double x) {116 if (Math.Abs(x) > 10) return 0;117 return Math.Exp(-0.5 * x * x) / Math.Sqrt(2 * Math.PI);118 }119 120 //taken from https://www.johndcook.com/blog/2009/01/19/stand-alone-error-function-erf/121 private static double StandardNormalDistribution(double x) {122 if (x > 10) return 1;123 if (x < -10) return 0;124 const double a1 = 0.254829592;125 const double a2 = -0.284496736;126 const double a3 = 1.421413741;127 const double a4 = -1.453152027;128 const double a5 = 1.061405429;129 const double p = 0.3275911;130 var sign = x < 0 ? -1 : 1;131 x = Math.Abs(x) / Math.Sqrt(2.0);132 var t = 1.0 / (1.0 + p * x);133 var y = 1.0 - ((((a5 * t + a4) * t + a3) * t + a2) * t + a1) * t * Math.Exp(-x * x);134 return 0.5 * (1.0 + sign * y);135 }136 #endregion137 60 } 138 61 } -
branches/EfficientGlobalOptimization/HeuristicLab.Algorithms.EGO/InfillCriteria/ExpectedQuality.cs
r14818 r15064 29 29 30 30 [StorableClass] 31 [Item("ExpectedQualityMeassure", "Use simply the qualitypredicted by the model")]31 [Item("ExpectedQualityMeassure", "Use the quality predicted by the model")] 32 32 public class ExpectedQuality : InfillCriterionBase { 33 #region HL-Constructors, Serialization and Cloning33 #region Constructors, Serialization and Cloning 34 34 [StorableConstructor] 35 pr ivateExpectedQuality(bool deserializing) : base(deserializing) { }36 pr ivateExpectedQuality(ExpectedQuality original, Cloner cloner) : base(original, cloner) { }35 protected ExpectedQuality(bool deserializing) : base(deserializing) { } 36 protected ExpectedQuality(ExpectedQuality original, Cloner cloner) : base(original, cloner) { } 37 37 public ExpectedQuality() { } 38 38 public override IDeepCloneable Clone(Cloner cloner) { … … 42 42 43 43 public override double Evaluate(RealVector vector) { 44 return RegressionSolution.Model.GetEstimation(vector);44 return ExpensiveMaximization ? RegressionSolution.Model.GetEstimation(vector) : -RegressionSolution.Model.GetEstimation(vector); 45 45 } 46 46 47 public override bool Maximization() { 48 return ExpensiveMaximization; 49 } 50 51 protected override void Initialize() { 47 public override void Initialize() { 52 48 } 53 49 } -
branches/EfficientGlobalOptimization/HeuristicLab.Algorithms.EGO/InfillCriteria/ExpectedQuantileImprovement.cs
r14818 r15064 35 35 [StorableClass] 36 36 [Item("ExpectedQuantileImprovement", "Noisy InfillCriterion, Extension of the Expected Improvement as described in \n Noisy expectedimprovement and on - line computation time allocation for the optimization of simulators with tunable fidelitys\r\nPicheny, V., Ginsbourger, D., Richet, Y")] 37 public class ExpectedQuantileImprovement : ExpectedImprovement {37 public class ExpectedQuantileImprovement : ExpectedImprovementBase { 38 38 39 39 #region Parameternames … … 48 48 49 49 #region Properties 50 51 50 public int MaxEvaluations => MaxEvaluationsParameter.Value.Value; 52 51 public double Alpha => AlphaParameter.Value.Value; 53 52 [Storable] 54 53 private double Tau; 55 56 54 #endregion 57 55 58 56 #region HL-Constructors, Serialization and Cloning 59 57 [StorableConstructor] 60 private ExpectedQuantileImprovement(bool deserializing) : base(deserializing) { } 61 62 private ExpectedQuantileImprovement(ExpectedQuantileImprovement original, Cloner cloner) : base(original, cloner) { 58 protected ExpectedQuantileImprovement(bool deserializing) : base(deserializing) { } 59 protected ExpectedQuantileImprovement(ExpectedQuantileImprovement original, Cloner cloner) : base(original, cloner) { 63 60 Tau = original.Tau; 64 61 } 65 66 62 public ExpectedQuantileImprovement() { 67 63 Parameters.Add(new FixedValueParameter<DoubleValue>(AlphaParameterName, "The Alpha value specifiying the robustness of the \"effective best solution\". Recommended value is 1.0", new DoubleValue(1.0))); 68 Parameters.Add(new ValueParameter<IntValue>(MaxEvaluationsParameterName, "The maximum number of evaluations allowed for EGO", new IntValue( 100)));64 Parameters.Add(new ValueParameter<IntValue>(MaxEvaluationsParameterName, "The maximum number of evaluations allowed for EGO", new IntValue(500))); 69 65 MaxEvaluationsParameter.Hidden = true; 70 66 } … … 74 70 #endregion 75 71 76 p ublic override double Evaluate(RealVector vector) {77 var model = RegressionSolution.Model as IConfidenceRegressionModel;78 var s2 = model.GetVariance(vector);72 protected override double FindBestFitness(IConfidenceRegressionSolution solution) { 73 Tau = RegressionSolution.EstimatedTrainingValues.Zip(solution.ProblemData.TargetVariableTrainingValues, (d, d1) => Math.Abs(d - d1)).Average(); 74 Tau = Tau * Tau / (MaxEvaluations - solution.ProblemData.Dataset.Rows % MaxEvaluations + 1); 79 75 80 var yhat = model.GetEstimation(vector) + Alpha * Math.Sqrt(Tau * s2 / (Tau + s2));81 var s = Math.Sqrt(s2 * s2 / (Tau + s2));76 var index = solution.EstimatedTrainingValues.Zip(solution.EstimatedTrainingVariances, (m, s2) => m + Alpha * Math.Sqrt(s2)).ArgMin(x => x); 77 return solution.EstimatedTrainingValues.ToArray()[index]; 82 78 83 return GetEstimatedImprovement(YMin, yhat, s, ExploitationWeight);84 79 } 85 80 86 protected override void Initialize() { 87 if (ExpensiveMaximization) throw new NotImplementedException("AugmentedExpectedImprovement for maximization not yet implemented"); 88 var solution = RegressionSolution as IConfidenceRegressionSolution; 89 if (solution == null) throw new ArgumentException("can not calculate Augmented EI without a regression solution providing confidence values"); 90 91 Tau = RegressionSolution.EstimatedTrainingValues.Zip(RegressionSolution.ProblemData.TargetVariableTrainingValues, (d, d1) => Math.Abs(d - d1)).Average(); 92 Tau = Tau * Tau / (MaxEvaluations - RegressionSolution.ProblemData.Dataset.Rows + 1); 93 94 var xss = new RealVector(Encoding.Length); 95 var xssIndex = solution.EstimatedTrainingVariances.Zip(solution.EstimatedTrainingVariances, (m, s2) => m + Alpha * Math.Sqrt(s2)).ArgMin(x => x); 96 var i = solution.ProblemData.TrainingIndices.ToArray()[xssIndex]; 97 for (var j = 0; j < Encoding.Length; j++) xss[j] = solution.ProblemData.Dataset.GetDoubleValue(i, j); 98 99 YMin = RegressionSolution.Model.GetEstimation(xss); 81 protected override double Evaluate(RealVector vector, double estimatedFitness, double estimatedStandardDeviation) { 82 var s2 = estimatedStandardDeviation * estimatedStandardDeviation; 83 var penalty = Alpha * Math.Sqrt(Tau * s2 / (Tau + s2)); 84 var yhat = estimatedFitness + (ExpensiveMaximization ? -penalty : penalty); 85 var s = Math.Sqrt(s2 * s2 / (Tau + s2)); 86 return GetEstimatedImprovement(BestFitness, yhat, s, ExploitationWeight, ExpensiveMaximization); 100 87 } 101 88 -
branches/EfficientGlobalOptimization/HeuristicLab.Algorithms.EGO/InfillCriteria/InfillCriterionBase.cs
r14818 r15064 30 30 [StorableClass] 31 31 public abstract class InfillCriterionBase : ParameterizedNamedItem, IInfillCriterion { 32 33 32 [Storable] 34 p rotected IRegressionSolution RegressionSolution;33 public IRegressionSolution RegressionSolution { get; set; } 35 34 [Storable] 36 p rotected bool ExpensiveMaximization;35 public bool ExpensiveMaximization { get; set; } 37 36 [Storable] 38 p rotected RealVectorEncoding Encoding;37 public RealVectorEncoding Encoding { get; set; } 39 38 40 39 protected InfillCriterionBase(bool deserializing) : base(deserializing) { } 41 42 40 protected InfillCriterionBase(InfillCriterionBase original, Cloner cloner) : base(original, cloner) { 43 41 RegressionSolution = cloner.Clone(original.RegressionSolution); … … 48 46 49 47 public abstract double Evaluate(RealVector vector); 50 public abstract bool Maximization();48 //public abstract bool Maximization(); 51 49 52 public void Initialize(IRegressionSolution solution, bool expensiveMaximization, RealVectorEncoding encoding) { 53 RegressionSolution = solution; 54 ExpensiveMaximization = expensiveMaximization; 55 Encoding = encoding; 56 Initialize(); 57 } 58 59 protected abstract void Initialize(); 60 50 public abstract void Initialize(); 61 51 } 62 52 } -
branches/EfficientGlobalOptimization/HeuristicLab.Algorithms.EGO/InfillCriteria/MinimalQuantileCriterium.cs
r14818 r15064 42 42 #region ParameterProperties 43 43 public IFixedValueParameter<DoubleValue> ConfidenceWeightParameter => Parameters[ConfidenceWeightParameterName] as IFixedValueParameter<DoubleValue>; 44 45 44 #endregion 46 45 47 46 #region Properties 48 47 private double ConfidenceWeight => ConfidenceWeightParameter.Value.Value; 49 50 48 #endregion 51 49 52 #region HL-Constructors, Serialization and Cloning50 #region Constructors, Serialization and Cloning 53 51 [StorableConstructor] 54 pr ivateMinimalQuantileCriterium(bool deserializing) : base(deserializing) { }55 pr ivateMinimalQuantileCriterium(MinimalQuantileCriterium original, Cloner cloner) : base(original, cloner) { }52 protected MinimalQuantileCriterium(bool deserializing) : base(deserializing) { } 53 protected MinimalQuantileCriterium(MinimalQuantileCriterium original, Cloner cloner) : base(original, cloner) { } 56 54 public MinimalQuantileCriterium() { 57 Parameters.Add(new FixedValueParameter<DoubleValue>(ConfidenceWeightParameterName, "A value between 0 and 1 indicating the focus on exploration (0) or exploitation (1)", new DoubleValue(0.5)));55 Parameters.Add(new FixedValueParameter<DoubleValue>(ConfidenceWeightParameterName, "A value greater than 0. The larger the value the stronger the emphasis on exploration", new DoubleValue(0.5))); 58 56 } 59 57 public override IDeepCloneable Clone(Cloner cloner) { … … 66 64 var yhat = model.GetEstimation(vector); 67 65 var s = Math.Sqrt(model.GetVariance(vector)) * ConfidenceWeight; 68 return ExpensiveMaximization ? yhat + s : yhat -s;66 return (ExpensiveMaximization ? yhat : -yhat) + s; 69 67 } 70 68 71 public override bool Maximization() {72 return ExpensiveMaximization;73 }74 69 75 p rotectedoverride void Initialize() {70 public override void Initialize() { 76 71 var model = RegressionSolution.Model as IConfidenceRegressionModel; 77 72 if (model == null) throw new ArgumentException("can not calculate EI without confidence measure"); -
branches/EfficientGlobalOptimization/HeuristicLab.Algorithms.EGO/InfillCriteria/PluginExpectedImprovement.cs
r14818 r15064 20 20 #endregion 21 21 22 using System;23 22 using System.Linq; 24 23 using HeuristicLab.Common; 25 24 using HeuristicLab.Core; 25 using HeuristicLab.Encodings.RealVectorEncoding; 26 26 using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; 27 27 using HeuristicLab.Problems.DataAnalysis; … … 32 32 [StorableClass] 33 33 [Item("PluginExpectedImprovement", "Noisy InfillCriterion, Extension of the Expected Improvement by using the minimal prediction on the observed points\n rather than the minimal observed value as described in \n Global optimization based on noisy evaluations: An empirical study of two statistical approaches\r\nEmmanuel Vazqueza, Julien Villemonteixb, Maryan Sidorkiewiczb and Éric Walterc")] 34 public class PluginExpectedImprovement : ExpectedImprovement { 35 34 public class PluginExpectedImprovement : ExpectedImprovementBase { 36 35 37 36 #region HL-Constructors, Serialization and Cloning 38 37 [StorableConstructor] 39 pr ivatePluginExpectedImprovement(bool deserializing) : base(deserializing) { }40 pr ivatePluginExpectedImprovement(PluginExpectedImprovement original, Cloner cloner) : base(original, cloner) { }38 protected PluginExpectedImprovement(bool deserializing) : base(deserializing) { } 39 protected PluginExpectedImprovement(PluginExpectedImprovement original, Cloner cloner) : base(original, cloner) { } 41 40 public PluginExpectedImprovement() { } 42 41 public override IDeepCloneable Clone(Cloner cloner) { … … 45 44 #endregion 46 45 47 protected override void Initialize() { 48 if (ExpensiveMaximization) throw new NotImplementedException("PluginExpectedImprovement for maximization not yet implemented"); 49 var model = RegressionSolution.Model as IConfidenceRegressionModel; 50 if (model == null) throw new ArgumentException("can not calculate EI without confidence measure"); 51 YMin = RegressionSolution.EstimatedTrainingValues.Min(); 46 protected override double FindBestFitness(IConfidenceRegressionSolution solution) { 47 return ExpensiveMaximization ? RegressionSolution.EstimatedTrainingValues.Max() : RegressionSolution.EstimatedTrainingValues.Min(); 48 } 49 50 protected override double Evaluate(RealVector vector, double estimatedFitness, double estimatedStandardDeviation) { 51 return GetEstimatedImprovement(BestFitness, estimatedFitness, estimatedStandardDeviation, ExploitationWeight, ExpensiveMaximization); 52 52 } 53 53 } -
branches/EfficientGlobalOptimization/HeuristicLab.Algorithms.EGO/Interfaces/IInfillCriterion.cs
r14818 r15064 27 27 namespace HeuristicLab.Algorithms.EGO { 28 28 public interface IInfillCriterion : INamedItem { 29 30 IRegressionSolution RegressionSolution { get; set; } 31 bool ExpensiveMaximization { get; set; } 32 RealVectorEncoding Encoding { get; set; } 29 33 double Evaluate(RealVector vector); 30 bool Maximization();31 void Initialize( IRegressionSolution solution, bool expensiveMaximization, RealVectorEncoding encoding);34 //bool Maximization(); 35 void Initialize(); 32 36 } 33 37 } -
branches/EfficientGlobalOptimization/HeuristicLab.Algorithms.EGO/Plugin.cs.frame
r14768 r15064 28 28 [Plugin("HeuristicLab.Algorithms.EGO", "3.4.5.$WCREV$")] 29 29 [PluginFile("HeuristicLab.Algorithms.EGO-3.4.dll", PluginFileType.Assembly)] 30 [PluginFile("displayModelFrame.html", PluginFileType.Data)]31 30 [PluginDependency("HeuristicLab.Algorithms.CMAEvolutionStrategy", "3.4")] 32 31 [PluginDependency("HeuristicLab.Algorithms.DataAnalysis", "3.4")] … … 34 33 [PluginDependency("HeuristicLab.Collections", "3.3")] 35 34 [PluginDependency("HeuristicLab.Common", "3.3")] 36 [PluginDependency("HeuristicLab.Common.Resources", "3.3")]37 35 [PluginDependency("HeuristicLab.Core", "3.3")] 38 36 [PluginDependency("HeuristicLab.Data", "3.3")] 39 37 [PluginDependency("HeuristicLab.Encodings.RealVectorEncoding", "3.3")] 38 [PluginDependency("HeuristicLab.Encodings.PermutationEncoding", "3.3")] 40 39 [PluginDependency("HeuristicLab.Operators","3.3")] 41 40 [PluginDependency("HeuristicLab.Optimization","3.3")] 41 [PluginDependency("HeuristicLab.Optimization.Operators","3.3")] 42 42 [PluginDependency("HeuristicLab.Parameters","3.3")] 43 43 [PluginDependency("HeuristicLab.Persistence","3.3")] -
branches/EfficientGlobalOptimization/HeuristicLab.Algorithms.EGO/Problems/InfillProblem.cs
r14818 r15064 21 21 22 22 using System; 23 using System.Collections.Generic; 24 using System.Linq; 23 25 using HeuristicLab.Common; 24 26 using HeuristicLab.Core; … … 27 29 using HeuristicLab.Optimization; 28 30 using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; 31 using HeuristicLab.Problems.DataAnalysis; 29 32 30 33 namespace HeuristicLab.Algorithms.EGO { … … 33 36 public sealed class InfillProblem : SingleObjectiveBasicProblem<RealVectorEncoding> { 34 37 35 public override bool Maximization => true; //This is necessary because algorithms do not expect the maximization to change38 public override bool Maximization => true; 36 39 37 #region Properties; 40 #region ProblemResultNames 41 public const string BestInfillSolutionResultName = "BestInfillSolution"; 42 public const string BestInfillQualityResultName = "BestInfillQuality"; 43 #endregion 44 45 #region Properties 38 46 [Storable] 39 47 private IInfillCriterion infillCriterion; 40 [Storable]41 private SingleObjectiveBasicProblem<IEncoding> problem;42 48 43 49 public IInfillCriterion InfillCriterion 44 50 { 45 51 get { return infillCriterion; } 46 set { infillCriterion = value; }47 }48 public SingleObjectiveBasicProblem<IEncoding> Problem49 {50 get { return problem; }51 52 set 52 53 { 53 problem = value; 54 if (problem == null) return; 55 var enc = problem.Encoding as RealVectorEncoding; 56 if (enc == null) throw new ArgumentException("EGO can not be performed on non-RealVectorEncodings"); 57 Encoding = enc; 58 SolutionCreator = new UniformRandomRealVectorCreator();//ignore Problem specific Solution Creation 59 54 infillCriterion = value; 55 infillCriterion.Encoding = Encoding; 60 56 } 61 57 } 62 58 #endregion 63 59 64 #region HLConstructors60 #region Constructors 65 61 [StorableConstructor] 66 62 private InfillProblem(bool deserializing) : base(deserializing) { } 67 63 private InfillProblem(InfillProblem original, Cloner cloner) : base(original, cloner) { 68 infillCriterion = cloner.Clone(original.InfillCriterion); 69 problem = cloner.Clone(original.Problem); 64 infillCriterion = cloner.Clone(original.infillCriterion); 70 65 } 71 66 public InfillProblem() { } … … 74 69 75 70 public override double Evaluate(Individual individual, IRandom r) { 76 var q = InfillCriterion.Evaluate(individual.RealVector()); 77 return InfillCriterion.Maximization() ? q : -q; 71 return !InBounds(individual.RealVector(), Encoding.Bounds) ? double.MinValue : InfillCriterion.Evaluate(individual.RealVector()); 78 72 } 79 73 public override void Analyze(Individual[] individuals, double[] qualities, ResultCollection results, IRandom random) { 80 74 base.Analyze(individuals, qualities, results, random); 81 75 var best = qualities.ArgMax(x => x); 82 var qnew = InfillCriterion.Maximization() ? qualities[best] : -qualities[best]; 83 const string qname = EfficientGlobalOptimizationAlgorithm.BestInfillQualityResultName; 84 const string sname = EfficientGlobalOptimizationAlgorithm.BestInfillSolutionResultName; 85 if (!results.ContainsKey(EfficientGlobalOptimizationAlgorithm.BestInfillQualityResultName)) { 86 results.Add(new Result(sname, (RealVector)individuals[best].RealVector().Clone())); 87 results.Add(new Result(qname, new DoubleValue(qnew))); 76 var newQuality = qualities[best]; 77 if (!results.ContainsKey(BestInfillQualityResultName)) { 78 results.Add(new Result(BestInfillSolutionResultName, (RealVector)individuals[best].RealVector().Clone())); 79 results.Add(new Result(BestInfillQualityResultName, new DoubleValue(newQuality))); 88 80 return; 89 81 } 90 var qold = results[ qname].Value as DoubleValue;82 var qold = results[BestInfillQualityResultName].Value as DoubleValue; 91 83 if (qold == null) throw new ArgumentException("Old best quality is not a double value. Conflicting Analyzers?"); 92 if (qold.Value >= qnew == InfillCriterion.Maximization()) return;93 results[ sname].Value = (RealVector)individuals[best].RealVector().Clone();94 qold.Value = qnew;84 if (qold.Value >= newQuality) return; 85 results[BestInfillSolutionResultName].Value = (RealVector)individuals[best].RealVector().Clone(); 86 qold.Value = newQuality; 95 87 } 88 public override IEnumerable<Individual> GetNeighbors(Individual individual, IRandom random) { 89 var bounds = Encoding.Bounds; 90 var michalewiczIteration = 0; 91 while (true) { 92 var neighbour = individual.Copy(); 93 var r = neighbour.RealVector(); 94 switch (random.Next(5)) { 95 case 0: UniformOnePositionManipulator.Apply(random, r, bounds); break; 96 case 1: UniformOnePositionManipulator.Apply(random, r, bounds); break;//FixedNormalAllPositionsManipulator.Apply(random, r, new RealVector(new[] { 0.1 })); break; 97 case 2: MichalewiczNonUniformAllPositionsManipulator.Apply(random, r, bounds, new IntValue(michalewiczIteration++), new IntValue(10000), new DoubleValue(5.0)); break; 98 case 3: MichalewiczNonUniformOnePositionManipulator.Apply(random, r, bounds, new IntValue(michalewiczIteration++), new IntValue(10000), new DoubleValue(5.0)); break; 99 case 4: BreederGeneticAlgorithmManipulator.Apply(random, r, bounds, new DoubleValue(0.1)); break; 100 default: throw new NotImplementedException(); 101 } 102 yield return neighbour; 103 michalewiczIteration %= 10000; 104 } 105 } 106 107 public void Initialize(IRegressionSolution model, bool expensiveMaximization) { 108 infillCriterion.RegressionSolution = model; 109 infillCriterion.ExpensiveMaximization = expensiveMaximization; 110 infillCriterion.Encoding = Encoding; 111 infillCriterion.Initialize(); 112 } 113 114 #region helpers 115 private static bool InBounds(RealVector r, DoubleMatrix bounds) { 116 return !r.Where((t, i) => t < bounds[i % bounds.Rows, 0] || t > bounds[i % bounds.Rows, 1]).Any(); 117 } 118 #endregion 119 96 120 } 97 121 } -
branches/EfficientGlobalOptimization/HeuristicLab.Algorithms.EGO/SamplingMethods/UniformRandomSampling.cs
r14833 r15064 34 34 #region HL-Constructors, Serialization and Cloning 35 35 [StorableConstructor] 36 pr ivateUniformRandomSampling(bool deserializing) : base(deserializing) { }37 pr ivateUniformRandomSampling(UniformRandomSampling original, Cloner cloner) : base(original, cloner) { }36 protected UniformRandomSampling(bool deserializing) : base(deserializing) { } 37 protected UniformRandomSampling(UniformRandomSampling original, Cloner cloner) : base(original, cloner) { } 38 38 public UniformRandomSampling() { 39 39 }
Note: See TracChangeset
for help on using the changeset viewer.