Changeset 14936 for trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4
- Timestamp:
- 05/05/17 16:06:17 (8 years ago)
- Location:
- trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/KernelRidgeRegression
- Files:
-
- 10 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/KernelRidgeRegression/KernelFunctions/CicularKernel.cs
r14892 r14936 25 25 using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; 26 26 27 namespace HeuristicLab.Algorithms.DataAnalysis .KernelRidgeRegression{27 namespace HeuristicLab.Algorithms.DataAnalysis { 28 28 [StorableClass] 29 29 [Item("CircularKernel", "A circular kernel function 2*pi*(acos(-d)-d*(1-d²)^(0.5)) where n = ||x-c|| and d = n/beta \n As described in http://crsouza.com/2010/03/17/kernel-functions-for-machine-learning-applications/")] -
trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/KernelRidgeRegression/KernelFunctions/GaussianKernel.cs
r14891 r14936 27 27 using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; 28 28 29 namespace HeuristicLab.Algorithms.DataAnalysis .KernelRidgeRegression{29 namespace HeuristicLab.Algorithms.DataAnalysis { 30 30 [StorableClass] 31 31 [Item("GaussianKernel", "A kernel function that uses Gaussian function exp(-n²/beta²). As described in http://crsouza.com/2010/03/17/kernel-functions-for-machine-learning-applications/")] -
trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/KernelRidgeRegression/KernelFunctions/IKernel.cs
r14887 r14936 21 21 22 22 23 namespace HeuristicLab.Algorithms.DataAnalysis .KernelRidgeRegression{23 namespace HeuristicLab.Algorithms.DataAnalysis { 24 24 public interface IKernel : ICovarianceFunction { 25 25 double? Beta { get; set; } // a kernel parameter -
trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/KernelRidgeRegression/KernelFunctions/InverseMultiquadraticKernel.cs
r14891 r14936 25 25 using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; 26 26 27 namespace HeuristicLab.Algorithms.DataAnalysis .KernelRidgeRegression{27 namespace HeuristicLab.Algorithms.DataAnalysis { 28 28 [StorableClass] 29 29 [Item("InverseMultiquadraticKernel", "A kernel function that uses the inverse multi-quadratic function 1 / sqrt(1+||x-c||²/beta²). Similar to http://crsouza.com/2010/03/17/kernel-functions-for-machine-learning-applications/ with beta as a scaling factor.")] -
trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/KernelRidgeRegression/KernelFunctions/KernelBase.cs
r14887 r14936 28 28 using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; 29 29 30 namespace HeuristicLab.Algorithms.DataAnalysis .KernelRidgeRegression{30 namespace HeuristicLab.Algorithms.DataAnalysis { 31 31 [StorableClass] 32 32 public abstract class KernelBase : ParameterizedNamedItem, IKernel { -
trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/KernelRidgeRegression/KernelFunctions/MultiquadraticKernel.cs
r14891 r14936 25 25 using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; 26 26 27 namespace HeuristicLab.Algorithms.DataAnalysis .KernelRidgeRegression{27 namespace HeuristicLab.Algorithms.DataAnalysis { 28 28 [StorableClass] 29 29 // conditionally positive definite. (need to add polynomials) see http://num.math.uni-goettingen.de/schaback/teaching/sc.pdf -
trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/KernelRidgeRegression/KernelFunctions/PolysplineKernel.cs
r14892 r14936 27 27 using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; 28 28 29 namespace HeuristicLab.Algorithms.DataAnalysis .KernelRidgeRegression{29 namespace HeuristicLab.Algorithms.DataAnalysis { 30 30 [StorableClass] 31 31 // conditionally positive definite. (need to add polynomials) see http://num.math.uni-goettingen.de/schaback/teaching/sc.pdf -
trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/KernelRidgeRegression/KernelFunctions/ThinPlatePolysplineKernel.cs
r14892 r14936 27 27 using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; 28 28 29 namespace HeuristicLab.Algorithms.DataAnalysis .KernelRidgeRegression{29 namespace HeuristicLab.Algorithms.DataAnalysis { 30 30 [StorableClass] 31 31 // conditionally positive definite. (need to add polynomials) see http://num.math.uni-goettingen.de/schaback/teaching/sc.pdf -
trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/KernelRidgeRegression/KernelRidgeRegression.cs
r14888 r14936 31 31 using HeuristicLab.Problems.DataAnalysis; 32 32 33 namespace HeuristicLab.Algorithms.DataAnalysis .KernelRidgeRegression{33 namespace HeuristicLab.Algorithms.DataAnalysis { 34 34 [Item("Kernel Ridge Regression", "Kernelized ridge regression e.g. for radial basis function (RBF) regression.")] 35 35 [Creatable(CreatableAttribute.Categories.DataAnalysisRegression, Priority = 100)] -
trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/KernelRidgeRegression/KernelRidgeRegressionModel.cs
r14892 r14936 28 28 using HeuristicLab.Problems.DataAnalysis; 29 29 30 namespace HeuristicLab.Algorithms.DataAnalysis .KernelRidgeRegression{30 namespace HeuristicLab.Algorithms.DataAnalysis { 31 31 [StorableClass] 32 32 [Item("KernelRidgeRegressionModel", "A kernel ridge regression model")]
Note: See TracChangeset
for help on using the changeset viewer.