Free cookie consent management tool by TermsFeed Policy Generator

Ignore:
Timestamp:
05/04/17 17:19:35 (8 years ago)
Author:
gkronber
Message:

#2520: changed all usages of StorableClass to use StorableType with an auto-generated GUID (did not add StorableType to other type definitions yet)

Location:
branches/PersistenceReintegration/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression
Files:
19 edited

Legend:

Unmodified
Added
Removed
  • branches/PersistenceReintegration/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/FeatureSelection/FeatureSelection.cs

    r14185 r14927  
    4848               + "Where is the S is a N x d matrix containing the selected columns from N x k the matrix of all features X" + Environment.NewLine
    4949               + "For each feature the probability that it is selected is " + selectionProbability + "%" + Environment.NewLine
    50                + "X(i,j) ~ N(0, 1) iid, w(i) ~ U(0, 10) iid, n ~ N(0, sigma(w*S) * SQRT(" + noiseRatio / (1 - noiseRatio)  + "))" + Environment.NewLine
     50               + "X(i,j) ~ N(0, 1) iid, w(i) ~ U(0, 10) iid, n ~ N(0, sigma(w*S) * SQRT(" + noiseRatio / (1 - noiseRatio) + "))" + Environment.NewLine
    5151               + "The noise level is " + noiseRatio + " * sigma, thus an optimal model has R² = "
    5252               + Math.Round(optimalRSquared, 2) + " (or equivalently: NMSE = " + noiseRatio + ")" + Environment.NewLine
  • branches/PersistenceReintegration/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/FeatureSelection/FeatureSelectionRegressionProblemData.cs

    r14185 r14927  
    2626using HeuristicLab.Data;
    2727using HeuristicLab.Parameters;
    28 using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
     28using HeuristicLab.Persistence;
    2929using HeuristicLab.Problems.DataAnalysis;
    3030
    3131namespace HeuristicLab.Problems.Instances.DataAnalysis {
    32   [StorableClass]
     32  [StorableType("f9a18311-052d-483d-a634-2bc425576b4f")]
    3333  public class FeatureSelectionRegressionProblemData : RegressionProblemData {
    3434    private const string SelectedFeaturesParameterName = "SelectedFeatures";
  • branches/PersistenceReintegration/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Korns/KornsFunctionFifteen.cs

    r14229 r14927  
    6464
    6565      data.Add(ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, -50, 50).ToList());
    66       data.Add(ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, -50, 50).ToList()); 
     66      data.Add(ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, -50, 50).ToList());
    6767      data.Add(ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 0, 50).ToList()); // note: range is only [0,50] to prevent NaN values (deviates from gp benchmark paper)
    6868      data.Add(ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, -50, 50).ToList());
  • branches/PersistenceReintegration/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Korns/KornsFunctionNine.cs

    r14229 r14927  
    6565      data.Add(ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 0, 50).ToList()); // note: range is only [0,50] to prevent NaN values (deviates from gp benchmark paper)
    6666      data.Add(ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 0, 50).ToList()); // note: range is only [0,50] to prevent NaN values (deviates from gp benchmark paper)
    67       data.Add(ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, -50, 50).ToList()); 
     67      data.Add(ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, -50, 50).ToList());
    6868      data.Add(ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, -50, 50).ToList());
    6969      data.Add(ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, -50, 50).ToList());
  • branches/PersistenceReintegration/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Korns/KornsFunctionSix.cs

    r14229 r14927  
    6363
    6464      data.Add(ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 0, 50).ToList()); // note: range is only [0,50] to prevent NaN values (deviates from gp benchmark paper)
    65       data.Add(ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, -50, 50).ToList());
    6665      data.Add(ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, -50, 50).ToList());
    6766      data.Add(ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, -50, 50).ToList());
    68       data.Add(ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, -50, 50).ToList());
     67      data.Add(ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, -50, 50).ToList());
     68      data.Add(ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, -50, 50).ToList());
    6969
    7070      double x0;
  • branches/PersistenceReintegration/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/MibaFriction/CF1.cs

    r14853 r14927  
    3333    protected override string TargetVariable { get { return "Cf1"; } }
    3434    protected override string[] VariableNames {
    35       get { return new string[] { "Partition", "Source1", "Source2", "x1", "Material_Cat", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", "x16", "Material", "Grooving", "Oil", "x17", "x18", "x19", "x20", "x21", "x22", "Cf1"
    36  }; }
     35      get {
     36        return new string[] { "Partition", "Source1", "Source2", "x1", "Material_Cat", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", "x16", "Material", "Grooving", "Oil", "x17", "x18", "x19", "x20", "x21", "x22", "Cf1"
     37 };
     38      }
    3739    }
    3840
    3941    protected override string[] AllowedInputVariables {
    40       get { return new string[] { "Material_Cat",
     42      get {
     43        return new string[] { "Material_Cat",
    4144        "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", "x16",
    4245        "Material", "Grooving", "Oil",
    43         "x17", "x20", "x22" }; }
     46        "x17", "x20", "x22" };
     47      }
    4448    }
    4549    protected override int TrainingPartitionStart { get { return 0; } }
  • branches/PersistenceReintegration/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/MibaFriction/CF2.cs

    r14853 r14927  
    3333    protected override string TargetVariable { get { return "Cf2"; } }
    3434    protected override string[] VariableNames {
    35       get { return new string[] { "Partition", "Source1", "Source2", "x1", "Material_Cat", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", "x16", "Material", "Grooving", "Oil", "x17", "x18", "x19", "x20", "x21", "x22", "Cf2"
     35      get {
     36        return new string[] { "Partition", "Source1", "Source2", "x1", "Material_Cat", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", "x16", "Material", "Grooving", "Oil", "x17", "x18", "x19", "x20", "x21", "x22", "Cf2"
    3637 };
    3738      }
     
    3940
    4041    protected override string[] AllowedInputVariables {
    41       get { return new string[] { "Material_Cat",
     42      get {
     43        return new string[] { "Material_Cat",
    4244        "Source1", "x1", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", "x16",
    4345        "Material", "Grooving", "Oil",
    44         "x17", "x18", "x19", "x20", "x21", "x22" }; }
     46        "x17", "x18", "x19", "x20", "x21", "x22" };
     47      }
    4548    }
    4649    protected override int TrainingPartitionStart { get { return 0; } }
  • branches/PersistenceReintegration/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/MibaFriction/CF3.cs

    r14853 r14927  
    3333    protected override string TargetVariable { get { return "Cf3"; } }
    3434    protected override string[] VariableNames {
    35       get { return new string[] { "Partition", "Source1", "Source2", "x1", "Material_Cat", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", "x16", "Material", "Grooving", "Oil", "x17", "x18", "x19", "x20", "x21", "x22", "Cf3"
     35      get {
     36        return new string[] { "Partition", "Source1", "Source2", "x1", "Material_Cat", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", "x16", "Material", "Grooving", "Oil", "x17", "x18", "x19", "x20", "x21", "x22", "Cf3"
    3637 };
    3738      }
     
    3940
    4041    protected override string[] AllowedInputVariables {
    41       get { return new string[] { "Material_Cat",
     42      get {
     43        return new string[] { "Material_Cat",
    4244        "Source1",  "x1", "x2", "x3", "x4", "x5", "x6", "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", "x16",
    4345        "Material", "Grooving", "Oil",
    44         "x17", "x22" }; }
     46        "x17", "x22" };
     47      }
    4548    }
    4649    protected override int TrainingPartitionStart { get { return 0; } }
  • branches/PersistenceReintegration/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/MibaFriction/CF4.cs

    r14853 r14927  
    3333    protected override string TargetVariable { get { return "Cf4"; } }
    3434    protected override string[] VariableNames {
    35       get { return new string[] { "Partition", "Source1", "Source2", "x1", "Material_Cat", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", "x16", "Material", "Grooving", "Oil", "x17", "x18", "x19", "x20", "x21", "x22", "Cf4"
     35      get {
     36        return new string[] { "Partition", "Source1", "Source2", "x1", "Material_Cat", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", "x16", "Material", "Grooving", "Oil", "x17", "x18", "x19", "x20", "x21", "x22", "Cf4"
    3637 };
    3738      }
     
    3940
    4041    protected override string[] AllowedInputVariables {
    41       get { return new string[] { "Material_Cat",
     42      get {
     43        return new string[] { "Material_Cat",
    4244        "x1", "x2", "x3", "x4", "x5", "x6", "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", "x16",
    4345        "Material", "Grooving", "Oil",
    44         "x17", "x22" }; }
     46        "x17", "x22" };
     47      }
    4548    }
    4649    protected override int TrainingPartitionStart { get { return 0; } }
  • branches/PersistenceReintegration/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/MibaFriction/NvhRating.cs

    r14853 r14927  
    3333    protected override string TargetVariable { get { return "NVH_Rating"; } }
    3434    protected override string[] VariableNames {
    35       get { return new string[] { "Partition", "Source1", "Source2", "x1", "Material_Cat", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", "x16", "Material", "Grooving", "Oil", "x17", "x18", "x19", "x20", "x21", "x22", "NVH_Rating"
     35      get {
     36        return new string[] { "Partition", "Source1", "Source2", "x1", "Material_Cat", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", "x16", "Material", "Grooving", "Oil", "x17", "x18", "x19", "x20", "x21", "x22", "NVH_Rating"
    3637 };
    3738      }
     
    3940
    4041    protected override string[] AllowedInputVariables {
    41       get { return new string[] { "Material_Cat",
     42      get {
     43        return new string[] { "Material_Cat",
    4244        "x1", "x2", "x3", "x4", "x5", "x6", "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", "x16",
    4345        "Material", "Grooving", "Oil",
    44         "x17", "x18", "x19", "x21", "x22" }; }
     46        "x17", "x18", "x19", "x21", "x22" };
     47      }
    4548    }
    4649    protected override int TrainingPartitionStart { get { return 0; } }
  • branches/PersistenceReintegration/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/MibaFriction/Temp1.cs

    r14853 r14927  
    3333    protected override string TargetVariable { get { return "Temp1"; } }
    3434    protected override string[] VariableNames {
    35       get { return new string[] { "Partition", "Source1", "Source2", "x1", "Material_Cat", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", "x16", "Material", "Grooving", "Oil", "x17", "x18", "x19", "x20", "x21", "x22", "Temp1"
     35      get {
     36        return new string[] { "Partition", "Source1", "Source2", "x1", "Material_Cat", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", "x16", "Material", "Grooving", "Oil", "x17", "x18", "x19", "x20", "x21", "x22", "Temp1"
    3637 };
    3738      }
     
    3940
    4041    protected override string[] AllowedInputVariables {
    41       get { return new string[] { "Material_Cat",
     42      get {
     43        return new string[] { "Material_Cat",
    4244        "x1", "x2", "x3", "x4", "x5", "x6", "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", "x16",
    4345        "Material", "Grooving", "Oil",
    44         "x17", "x22" }; }
     46        "x17", "x22" };
     47      }
    4548    }
    4649    protected override int TrainingPartitionStart { get { return 0; } }
  • branches/PersistenceReintegration/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/MibaFriction/Temp2.cs

    r14853 r14927  
    3333    protected override string TargetVariable { get { return "Temp2"; } }
    3434    protected override string[] VariableNames {
    35       get { return new string[] { "Partition", "Source1", "Source2", "x1", "Material_Cat", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", "x16", "Material", "Grooving", "Oil", "x17", "x18", "x19", "x20", "x21", "x22", "Temp2"
     35      get {
     36        return new string[] { "Partition", "Source1", "Source2", "x1", "Material_Cat", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", "x16", "Material", "Grooving", "Oil", "x17", "x18", "x19", "x20", "x21", "x22", "Temp2"
    3637 };
    3738      }
     
    3940
    4041    protected override string[] AllowedInputVariables {
    41       get { return new string[] { "Material_Cat",
     42      get {
     43        return new string[] { "Material_Cat",
    4244        "x1", "x2", "x3", "x4", "x5", "x6", "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", "x16",
    4345        "Material", "Grooving", "Oil",
    44         "x17", "x22" }; }
     46        "x17", "x22" };
     47      }
    4548    }
    4649    protected override int TrainingPartitionStart { get { return 0; } }
  • branches/PersistenceReintegration/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/MibaFriction/Wear1.cs

    r14853 r14927  
    3333    protected override string TargetVariable { get { return "Wear1"; } }
    3434    protected override string[] VariableNames {
    35       get { return new string[] { "Partition", "Source1", "Source2", "x1", "Material_Cat", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", "x16", "Material", "Grooving", "Oil", "x17", "x18", "x19", "x20", "x21", "x22", "Wear1"
     35      get {
     36        return new string[] { "Partition", "Source1", "Source2", "x1", "Material_Cat", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", "x16", "Material", "Grooving", "Oil", "x17", "x18", "x19", "x20", "x21", "x22", "Wear1"
    3637 };
    3738      }
     
    3940
    4041    protected override string[] AllowedInputVariables {
    41       get { return new string[] { "Material_Cat",
     42      get {
     43        return new string[] { "Material_Cat",
    4244        "Source1", "x1", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", "x16",
    4345        "Material", "Grooving", "Oil",
    44         "x17", "x18", "x19", "x20", "x21", "x22" }; }
     46        "x17", "x18", "x19", "x20", "x21", "x22" };
     47      }
    4548    }
    4649    protected override int TrainingPartitionStart { get { return 0; } }
  • branches/PersistenceReintegration/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/MibaFriction/Wear2.cs

    r14853 r14927  
    3333    protected override string TargetVariable { get { return "Wear2"; } }
    3434    protected override string[] VariableNames {
    35       get { return new string[] { "Partition", "Source1", "Source2", "x1", "Material_Cat", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", "x16", "Material", "Grooving", "Oil", "x17", "x18", "x19", "x20", "x21", "x22", "Wear2"
     35      get {
     36        return new string[] { "Partition", "Source1", "Source2", "x1", "Material_Cat", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", "x16", "Material", "Grooving", "Oil", "x17", "x18", "x19", "x20", "x21", "x22", "Wear2"
    3637 };
    3738      }
     
    3940
    4041    protected override string[] AllowedInputVariables {
    41       get { return new string[] { "Material_Cat",
     42      get {
     43        return new string[] { "Material_Cat",
    4244        "Source1", "x1", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", "x16",
    4345        "Material", "Grooving", "Oil",
    44         "x17", "x18", "x19", "x20", "x21", "x22" }; }
     46        "x17", "x18", "x19", "x20", "x21", "x22" };
     47      }
    4548    }
    4649    protected override int TrainingPartitionStart { get { return 0; } }
  • branches/PersistenceReintegration/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Nguyen/NguyenFunctionTwo.cs

    r14229 r14927  
    5959      for (int i = 0; i < data[0].Count; i++) {
    6060        x = data[0][i];
    61         results.Add(Math.Pow(x, 4) + Math.Pow(x, 3) + x*x + x);
     61        results.Add(Math.Pow(x, 4) + Math.Pow(x, 3) + x * x + x);
    6262      }
    6363      data.Add(results);
  • branches/PersistenceReintegration/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/VariableNetworks/GaussianProcessVariableNetwork.cs

    r14630 r14927  
    9090      var changedL = new double[l.Length];
    9191      var relevance = new double[l.Length];
    92       for(int i = 0; i < l.Length; i++) {
     92      for (int i = 0; i < l.Length; i++) {
    9393        Array.Copy(l, changedL, changedL.Length);
    9494        changedL[i] = double.MaxValue;
     
    100100        OnlineCalculatorError error;
    101101        var mse = OnlineMeanSquaredErrorCalculator.Calculate(y, yChanged, out error);
    102         if(error != OnlineCalculatorError.None) mse = double.MaxValue;
     102        if (error != OnlineCalculatorError.None) mse = double.MaxValue;
    103103        relevance[i] = mse;
    104104      }
    105105      // scale so that max relevance is 1.0
    106106      var maxRel = relevance.Max();
    107       for(int i = 0; i < relevance.Length; i++) relevance[i] /= maxRel;
     107      for (int i = 0; i < relevance.Length; i++) relevance[i] /= maxRel;
    108108      return relevance;
    109109    }
     
    112112      int nRows = xs.First().Count;
    113113      double[,] K = new double[nRows, nRows];
    114       for(int r = 0; r < nRows; r++) {
     114      for (int r = 0; r < nRows; r++) {
    115115        double[] xi = xs.Select(x => x[r]).ToArray();
    116         for(int c = 0; c <= r; c++) {
     116        for (int c = 0; c <= r; c++) {
    117117          double[] xj = xs.Select(x => x[c]).ToArray();
    118118          double dSqr = xi.Zip(xj, (xik, xjk) => (xik - xjk))
     
    124124      }
    125125      // add a small diagonal matrix for numeric stability
    126       for(int i = 0; i < nRows; i++) {
     126      for (int i = 0; i < nRows; i++) {
    127127        K[i, i] += 1.0E-7;
    128128      }
  • branches/PersistenceReintegration/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/VariableNetworks/LinearVariableNetwork.cs

    r14630 r14927  
    7575      int nRows = xs.First().Count;
    7676      var y = new double[nRows];
    77       for(int row = 0; row < nRows; row++) {
     77      for (int row = 0; row < nRows; row++) {
    7878        y[row] = xs.Select(xi => xi[row]).Zip(c, (xij, cj) => xij * cj).Sum();
    7979        y[row] /= c.Length;
     
    9090      var changedL = new double[l.Length];
    9191      var relevance = new double[l.Length];
    92       for(int i = 0; i < l.Length; i++) {
     92      for (int i = 0; i < l.Length; i++) {
    9393        Array.Copy(l, changedL, changedL.Length);
    9494        changedL[i] = 0.0;
     
    9898        OnlineCalculatorError error;
    9999        var mse = OnlineMeanSquaredErrorCalculator.Calculate(y, yChanged, out error);
    100         if(error != OnlineCalculatorError.None) mse = double.MaxValue;
     100        if (error != OnlineCalculatorError.None) mse = double.MaxValue;
    101101        relevance[i] = mse;
    102102      }
    103103      // scale so that max relevance is 1.0
    104104      var maxRel = relevance.Max();
    105       for(int i = 0; i < relevance.Length; i++) relevance[i] /= maxRel;
     105      for (int i = 0; i < relevance.Length; i++) relevance[i] /= maxRel;
    106106      return relevance;
    107107    }
  • branches/PersistenceReintegration/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/VariableNetworks/VariableNetwork.cs

    r14630 r14927  
    100100
    101101      var nrand = new NormalDistributedRandom(random, 0, 1);
    102       for(int c = 0; c < numLvl0; c++) {
     102      for (int c = 0; c < numLvl0; c++) {
    103103        inputVarNames.Add(new string[] { });
    104104        relevances.Add(new double[] { });
     
    108108        var sigma = x.StandardDeviationPop();
    109109        var mean = x.Average();
    110         for(int i = 0; i < x.Count; i++) x[i] = (x[i] - mean) / sigma;
     110        for (int i = 0; i < x.Count; i++) x[i] = (x[i] - mean) / sigma;
    111111        var noisePrng = new NormalDistributedRandom(random, 0, Math.Sqrt(noiseRatio / (1.0 - noiseRatio)));
    112112        lvl0.Add(x.Select(t => t + noisePrng.NextDouble()).ToList());
     
    126126
    127127      this.variableRelevances.Clear();
    128       for(int i = 0; i < variableNames.Length; i++) {
     128      for (int i = 0; i < variableNames.Length; i++) {
    129129        var targetVarName = variableNames[i];
    130130        var targetRelevantInputs =
     
    137137      // for graphviz
    138138      networkDefinition += Environment.NewLine + "digraph G {";
    139       for(int i = 0; i < variableNames.Length; i++) {
     139      for (int i = 0; i < variableNames.Length; i++) {
    140140        var name = variableNames[i];
    141141        var selectedVarNames = inputVarNames[i];
    142142        var selectedRelevances = relevances[i];
    143         for(int j = 0; j < selectedVarNames.Length; j++) {
     143        for (int j = 0; j < selectedVarNames.Length; j++) {
    144144          var selectedVarName = selectedVarNames[j];
    145145          var selectedRelevance = selectedRelevances[j];
     
    159159    private List<List<double>> CreateVariables(List<List<double>> allowedInputs, int numVars, List<string[]> inputVarNames, List<string> description, List<double[]> relevances) {
    160160      var newVariables = new List<List<double>>();
    161       for(int c = 0; c < numVars; c++) {
     161      for (int c = 0; c < numVars; c++) {
    162162        string[] selectedVarNames;
    163163        double[] relevance;
     
    166166        var sigma = x.StandardDeviation();
    167167        var mean = x.Average();
    168         for(int i = 0; i < x.Length; i++) x[i] = (x[i] - mean) / sigma;
     168        for (int i = 0; i < x.Length; i++) x[i] = (x[i] - mean) / sigma;
    169169
    170170        var noisePrng = new NormalDistributedRandom(random, 0, Math.Sqrt(noiseRatio / (1.0 - noiseRatio)));
  • branches/PersistenceReintegration/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Vladislavleva/RationalPolynomialThreeDimensional.cs

    r14229 r14927  
    6363      data.Add(ValueGenerator.GenerateUniformDistributedValues(rand.Next(), n, 0.05, 2).ToList());
    6464
    65       List<List<double>> testData = new List<List<double>>() { 
    66         SequenceGenerator.GenerateSteps(-0.05m, 2.05m, 0.15m).Select(v => (double)v).ToList(), 
     65      List<List<double>> testData = new List<List<double>>() {
     66        SequenceGenerator.GenerateSteps(-0.05m, 2.05m, 0.15m).Select(v => (double)v).ToList(),
    6767        SequenceGenerator.GenerateSteps( 0.95m, 2.05m, 0.1m).Select(v => (double)v).ToList(),
    6868        SequenceGenerator.GenerateSteps(-0.05m, 2.05m, 0.15m).Select(v => (double)v).ToList()
Note: See TracChangeset for help on using the changeset viewer.