Changeset 14927 for branches/PersistenceReintegration/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/SingleObjective/Evaluators
- Timestamp:
- 05/04/17 17:19:35 (8 years ago)
- Location:
- branches/PersistenceReintegration/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/SingleObjective/Evaluators
- Files:
-
- 9 edited
Legend:
- Unmodified
- Added
- Removed
-
branches/PersistenceReintegration/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/SingleObjective/Evaluators/SymbolicRegressionConstantOptimizationEvaluator.cs
r14843 r14927 28 28 using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; 29 29 using HeuristicLab.Parameters; 30 using HeuristicLab.Persistence .Default.CompositeSerializers.Storable;30 using HeuristicLab.Persistence; 31 31 32 32 namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression { 33 33 [Item("Constant Optimization Evaluator", "Calculates Pearson R² of a symbolic regression solution and optimizes the constant used.")] 34 [Storable Class]34 [StorableType("feecded4-f5c9-496d-9150-0e16e3e93f7c")] 35 35 public class SymbolicRegressionConstantOptimizationEvaluator : SymbolicRegressionSingleObjectiveEvaluator { 36 36 private const string ConstantOptimizationIterationsParameterName = "ConstantOptimizationIterations"; -
branches/PersistenceReintegration/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/SingleObjective/Evaluators/SymbolicRegressionLogResidualEvaluator.cs
r14185 r14927 27 27 using HeuristicLab.Data; 28 28 using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; 29 using HeuristicLab.Persistence .Default.CompositeSerializers.Storable;29 using HeuristicLab.Persistence; 30 30 31 31 namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression { 32 [Item("Log Residual Evaluator", "Evaluator for symbolic regression models that calculates the mean of logarithmic absolute residuals avg(log( 1 + abs(y' - y)))" + 32 [Item("Log Residual Evaluator", "Evaluator for symbolic regression models that calculates the mean of logarithmic absolute residuals avg(log( 1 + abs(y' - y)))" + 33 33 "This evaluator does not perform linear scaling!" + 34 34 "This evaluator can be useful if the modeled function contains discontinuities (e.g. 1/x). " + … … 38 38 "This effects GP convergence because functional fragments which are necessary to explain small variations are also more likely" + 39 39 " to stay in the population. This is useful even when the actual objective function is mean of squared errors.")] 40 [Storable Class]40 [StorableType("6a2b4b99-3c19-41e3-adc7-62bb38721cb4")] 41 41 public class SymbolicRegressionLogResidualEvaluator : SymbolicRegressionSingleObjectiveEvaluator { 42 42 [StorableConstructor] -
branches/PersistenceReintegration/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/SingleObjective/Evaluators/SymbolicRegressionMeanRelativeErrorEvaluator.cs
r14185 r14927 27 27 using HeuristicLab.Data; 28 28 using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; 29 using HeuristicLab.Persistence .Default.CompositeSerializers.Storable;29 using HeuristicLab.Persistence; 30 30 31 31 namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression { … … 33 33 "The +1 is necessary to handle data with the value of 0.0 correctly. " + 34 34 "Notice: Linear scaling is ignored for this evaluator.")] 35 [Storable Class]35 [StorableType("a3d19505-1a12-4d4f-932c-0ebc8044562d")] 36 36 public class SymbolicRegressionMeanRelativeErrorEvaluator : SymbolicRegressionSingleObjectiveEvaluator { 37 37 public override bool Maximization { get { return false; } } -
branches/PersistenceReintegration/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/SingleObjective/Evaluators/SymbolicRegressionSingleObjectiveEvaluator.cs
r14185 r14927 27 27 using HeuristicLab.Data; 28 28 using HeuristicLab.Parameters; 29 using HeuristicLab.Persistence .Default.CompositeSerializers.Storable;29 using HeuristicLab.Persistence; 30 30 namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression { 31 [Storable Class]32 public abstract class SymbolicRegressionSingleObjectiveEvaluator : SymbolicDataAnalysisSingleObjectiveEvaluator<IRegressionProblemData>, ISymbolicRegressionSingleObjectiveEvaluator { 31 [StorableType("6b51b89e-8d04-4736-8ffa-80485607ebfe")] 32 public abstract class SymbolicRegressionSingleObjectiveEvaluator : SymbolicDataAnalysisSingleObjectiveEvaluator<IRegressionProblemData>, ISymbolicRegressionSingleObjectiveEvaluator { 33 33 [StorableConstructor] 34 34 protected SymbolicRegressionSingleObjectiveEvaluator(bool deserializing) : base(deserializing) { } 35 35 protected SymbolicRegressionSingleObjectiveEvaluator(SymbolicRegressionSingleObjectiveEvaluator original, Cloner cloner) : base(original, cloner) { } 36 protected SymbolicRegressionSingleObjectiveEvaluator() : base() {}36 protected SymbolicRegressionSingleObjectiveEvaluator() : base() { } 37 37 } 38 38 } -
branches/PersistenceReintegration/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/SingleObjective/Evaluators/SymbolicRegressionSingleObjectiveMaxAbsoluteErrorEvaluator.cs
r14185 r14927 25 25 using HeuristicLab.Data; 26 26 using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; 27 using HeuristicLab.Persistence .Default.CompositeSerializers.Storable;27 using HeuristicLab.Persistence; 28 28 29 29 namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression { 30 30 [Item("Maximum absolute error Evaluator", "Calculates the maximum squared error of a symbolic regression solution.")] 31 [Storable Class]31 [StorableType("744f2ac1-82d4-40d9-b037-beb362793d88")] 32 32 public class SymbolicRegressionSingleObjectiveMaxAbsoluteErrorEvaluator : SymbolicRegressionSingleObjectiveEvaluator { 33 33 public override bool Maximization { get { return false; } } -
branches/PersistenceReintegration/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/SingleObjective/Evaluators/SymbolicRegressionSingleObjectiveMeanAbsoluteErrorEvaluator.cs
r14185 r14927 25 25 using HeuristicLab.Data; 26 26 using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; 27 using HeuristicLab.Persistence .Default.CompositeSerializers.Storable;27 using HeuristicLab.Persistence; 28 28 29 29 namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression { 30 30 [Item("Mean absolute error Evaluator", "Calculates the mean absolute error of a symbolic regression solution.")] 31 [Storable Class]31 [StorableType("8be4e783-5141-441e-baac-2d2226979dfd")] 32 32 public class SymbolicRegressionSingleObjectiveMeanAbsoluteErrorEvaluator : SymbolicRegressionSingleObjectiveEvaluator { 33 33 public override bool Maximization { get { return false; } } -
branches/PersistenceReintegration/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/SingleObjective/Evaluators/SymbolicRegressionSingleObjectiveMeanSquaredErrorEvaluator.cs
r14185 r14927 25 25 using HeuristicLab.Data; 26 26 using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; 27 using HeuristicLab.Persistence .Default.CompositeSerializers.Storable;27 using HeuristicLab.Persistence; 28 28 29 29 namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression { 30 30 [Item("Mean squared error Evaluator", "Calculates the mean squared error of a symbolic regression solution.")] 31 [Storable Class]31 [StorableType("d9975a6a-2db7-4f88-bfc6-b697ba20d7d6")] 32 32 public class SymbolicRegressionSingleObjectiveMeanSquaredErrorEvaluator : SymbolicRegressionSingleObjectiveEvaluator { 33 33 public override bool Maximization { get { return false; } } -
branches/PersistenceReintegration/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/SingleObjective/Evaluators/SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.cs
r14354 r14927 25 25 using HeuristicLab.Data; 26 26 using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; 27 using HeuristicLab.Persistence .Default.CompositeSerializers.Storable;27 using HeuristicLab.Persistence; 28 28 29 29 namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression { 30 30 [Item("Pearson R² Evaluator", "Calculates the square of the pearson correlation coefficient (also known as coefficient of determination) of a symbolic regression solution.")] 31 [Storable Class]31 [StorableType("e067c9dc-cc13-4f93-96c2-aacae751e335")] 32 32 public class SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator : SymbolicRegressionSingleObjectiveEvaluator { 33 33 [StorableConstructor] … … 70 70 } 71 71 if (errorState != OnlineCalculatorError.None) return double.NaN; 72 return r *r;72 return r * r; 73 73 } 74 74 -
branches/PersistenceReintegration/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/SingleObjective/Evaluators/SymbolicRegressionVarianceModelEvaluator.cs
r14528 r14927 27 27 using HeuristicLab.Data; 28 28 using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; 29 using HeuristicLab.Persistence .Default.CompositeSerializers.Storable;29 using HeuristicLab.Persistence; 30 30 31 31 namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression { 32 32 [Item("Variance Model Evaluator", "Can be used for modeling variance of a variable. Assumes that the variable values are sampled from a zero mean Gaussian. Use a model for the target variable to calculate the residuals. In a second step use the residuals as the target variable and use this evaluator to create the model for the conditional variance.")] 33 [Storable Class]33 [StorableType("4a70f22b-b92c-4783-b119-fd50b29f2f38")] 34 34 public class SymbolicRegressionVarianceModelEvaluator : SymbolicRegressionSingleObjectiveEvaluator { 35 35 [StorableConstructor]
Note: See TracChangeset
for help on using the changeset viewer.