Free cookie consent management tool by TermsFeed Policy Generator

Ignore:
Timestamp:
05/04/17 17:19:35 (8 years ago)
Author:
gkronber
Message:

#2520: changed all usages of StorableClass to use StorableType with an auto-generated GUID (did not add StorableType to other type definitions yet)

Location:
branches/PersistenceReintegration/HeuristicLab.Algorithms.DataAnalysis/3.4/KernelRidgeRegression/KernelFunctions
Files:
7 edited

Legend:

Unmodified
Added
Removed
  • branches/PersistenceReintegration/HeuristicLab.Algorithms.DataAnalysis/3.4/KernelRidgeRegression/KernelFunctions/CicularKernel.cs

    r14892 r14927  
    2323using HeuristicLab.Common;
    2424using HeuristicLab.Core;
    25 using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
     25using HeuristicLab.Persistence;
    2626
    2727namespace HeuristicLab.Algorithms.DataAnalysis.KernelRidgeRegression {
    28   [StorableClass]
     28  [StorableType("1fd9295f-e118-42b2-9a6d-63449f2a3d3c")]
    2929  [Item("CircularKernel", "A circular kernel function 2*pi*(acos(-d)-d*(1-d²)^(0.5)) where n = ||x-c|| and d = n/beta \n  As described in http://crsouza.com/2010/03/17/kernel-functions-for-machine-learning-applications/")]
    3030  public class CircularKernel : KernelBase {
  • branches/PersistenceReintegration/HeuristicLab.Algorithms.DataAnalysis/3.4/KernelRidgeRegression/KernelFunctions/GaussianKernel.cs

    r14891 r14927  
    2525using HeuristicLab.Core;
    2626
    27 using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
     27using HeuristicLab.Persistence;
    2828
    2929namespace HeuristicLab.Algorithms.DataAnalysis.KernelRidgeRegression {
    30   [StorableClass]
     30  [StorableType("6ad73da5-e042-4fe5-8b10-414a07d0deb7")]
    3131  [Item("GaussianKernel", "A kernel function that uses Gaussian function exp(-n²/beta²). As described in http://crsouza.com/2010/03/17/kernel-functions-for-machine-learning-applications/")]
    3232  public class GaussianKernel : KernelBase {
  • branches/PersistenceReintegration/HeuristicLab.Algorithms.DataAnalysis/3.4/KernelRidgeRegression/KernelFunctions/InverseMultiquadraticKernel.cs

    r14891 r14927  
    2323using HeuristicLab.Common;
    2424using HeuristicLab.Core;
    25 using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
     25using HeuristicLab.Persistence;
    2626
    2727namespace HeuristicLab.Algorithms.DataAnalysis.KernelRidgeRegression {
    28   [StorableClass]
     28  [StorableType("ecd37191-f1e5-48b8-a25b-874563a6afd6")]
    2929  [Item("InverseMultiquadraticKernel", "A kernel function that uses the inverse multi-quadratic function  1 / sqrt(1+||x-c||²/beta²). Similar to http://crsouza.com/2010/03/17/kernel-functions-for-machine-learning-applications/ with beta as a scaling factor.")]
    3030  public class InverseMultiquadraticKernel : KernelBase {
  • branches/PersistenceReintegration/HeuristicLab.Algorithms.DataAnalysis/3.4/KernelRidgeRegression/KernelFunctions/KernelBase.cs

    r14887 r14927  
    2626using HeuristicLab.Core;
    2727using HeuristicLab.Parameters;
    28 using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
     28using HeuristicLab.Persistence;
    2929
    3030namespace HeuristicLab.Algorithms.DataAnalysis.KernelRidgeRegression {
    31   [StorableClass]
     31  [StorableType("c6e3751a-1eab-4068-af73-e39f52cded26")]
    3232  public abstract class KernelBase : ParameterizedNamedItem, IKernel {
    3333
  • branches/PersistenceReintegration/HeuristicLab.Algorithms.DataAnalysis/3.4/KernelRidgeRegression/KernelFunctions/MultiquadraticKernel.cs

    r14891 r14927  
    2323using HeuristicLab.Common;
    2424using HeuristicLab.Core;
    25 using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
     25using HeuristicLab.Persistence;
    2626
    2727namespace HeuristicLab.Algorithms.DataAnalysis.KernelRidgeRegression {
    28   [StorableClass]
     28  [StorableType("65ab934e-630c-4c70-8767-2ea1df20abd1")]
    2929  // conditionally positive definite. (need to add polynomials) see http://num.math.uni-goettingen.de/schaback/teaching/sc.pdf
    3030  [Item("MultiquadraticKernel", "A kernel function that uses the multi-quadratic function sqrt(1+||x-c||²/beta²). Similar to http://crsouza.com/2010/03/17/kernel-functions-for-machine-learning-applications/ with beta as a scaling factor.")]
  • branches/PersistenceReintegration/HeuristicLab.Algorithms.DataAnalysis/3.4/KernelRidgeRegression/KernelFunctions/PolysplineKernel.cs

    r14892 r14927  
    2525using HeuristicLab.Data;
    2626using HeuristicLab.Parameters;
    27 using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
     27using HeuristicLab.Persistence;
    2828
    2929namespace HeuristicLab.Algorithms.DataAnalysis.KernelRidgeRegression {
    30   [StorableClass]
     30  [StorableType("424d1640-3752-4e6e-a749-58ddf0332bbf")]
    3131  // conditionally positive definite. (need to add polynomials) see http://num.math.uni-goettingen.de/schaback/teaching/sc.pdf
    3232  [Item("PolysplineKernel", "A kernel function that uses the polyharmonic function (||x-c||/Beta)^Degree as given in http://num.math.uni-goettingen.de/schaback/teaching/sc.pdf with beta as a scaling parameters.")]
  • branches/PersistenceReintegration/HeuristicLab.Algorithms.DataAnalysis/3.4/KernelRidgeRegression/KernelFunctions/ThinPlatePolysplineKernel.cs

    r14892 r14927  
    2525using HeuristicLab.Data;
    2626using HeuristicLab.Parameters;
    27 using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
     27using HeuristicLab.Persistence;
    2828
    2929namespace HeuristicLab.Algorithms.DataAnalysis.KernelRidgeRegression {
    30   [StorableClass]
     30  [StorableType("448226e7-bdac-4269-a306-e8fb398cae33")]
    3131  // conditionally positive definite. (need to add polynomials) see http://num.math.uni-goettingen.de/schaback/teaching/sc.pdf
    3232  [Item("ThinPlatePolysplineKernel", "A kernel function that uses the ThinPlatePolyspline function (||x-c||/Beta)^(Degree)*log(||x-c||/Beta) as described in \"Thin-Plate Spline Radial Basis Function Scheme for Advection-Diffusion Problems\" with beta as a scaling parameter.")]
Note: See TracChangeset for help on using the changeset viewer.