Changeset 14927 for branches/PersistenceReintegration/HeuristicLab.Algorithms.DataAnalysis/3.4/KernelRidgeRegression/KernelFunctions
- Timestamp:
- 05/04/17 17:19:35 (8 years ago)
- Location:
- branches/PersistenceReintegration/HeuristicLab.Algorithms.DataAnalysis/3.4/KernelRidgeRegression/KernelFunctions
- Files:
-
- 7 edited
Legend:
- Unmodified
- Added
- Removed
-
branches/PersistenceReintegration/HeuristicLab.Algorithms.DataAnalysis/3.4/KernelRidgeRegression/KernelFunctions/CicularKernel.cs
r14892 r14927 23 23 using HeuristicLab.Common; 24 24 using HeuristicLab.Core; 25 using HeuristicLab.Persistence .Default.CompositeSerializers.Storable;25 using HeuristicLab.Persistence; 26 26 27 27 namespace HeuristicLab.Algorithms.DataAnalysis.KernelRidgeRegression { 28 [Storable Class]28 [StorableType("1fd9295f-e118-42b2-9a6d-63449f2a3d3c")] 29 29 [Item("CircularKernel", "A circular kernel function 2*pi*(acos(-d)-d*(1-d²)^(0.5)) where n = ||x-c|| and d = n/beta \n As described in http://crsouza.com/2010/03/17/kernel-functions-for-machine-learning-applications/")] 30 30 public class CircularKernel : KernelBase { -
branches/PersistenceReintegration/HeuristicLab.Algorithms.DataAnalysis/3.4/KernelRidgeRegression/KernelFunctions/GaussianKernel.cs
r14891 r14927 25 25 using HeuristicLab.Core; 26 26 27 using HeuristicLab.Persistence .Default.CompositeSerializers.Storable;27 using HeuristicLab.Persistence; 28 28 29 29 namespace HeuristicLab.Algorithms.DataAnalysis.KernelRidgeRegression { 30 [Storable Class]30 [StorableType("6ad73da5-e042-4fe5-8b10-414a07d0deb7")] 31 31 [Item("GaussianKernel", "A kernel function that uses Gaussian function exp(-n²/beta²). As described in http://crsouza.com/2010/03/17/kernel-functions-for-machine-learning-applications/")] 32 32 public class GaussianKernel : KernelBase { -
branches/PersistenceReintegration/HeuristicLab.Algorithms.DataAnalysis/3.4/KernelRidgeRegression/KernelFunctions/InverseMultiquadraticKernel.cs
r14891 r14927 23 23 using HeuristicLab.Common; 24 24 using HeuristicLab.Core; 25 using HeuristicLab.Persistence .Default.CompositeSerializers.Storable;25 using HeuristicLab.Persistence; 26 26 27 27 namespace HeuristicLab.Algorithms.DataAnalysis.KernelRidgeRegression { 28 [Storable Class]28 [StorableType("ecd37191-f1e5-48b8-a25b-874563a6afd6")] 29 29 [Item("InverseMultiquadraticKernel", "A kernel function that uses the inverse multi-quadratic function 1 / sqrt(1+||x-c||²/beta²). Similar to http://crsouza.com/2010/03/17/kernel-functions-for-machine-learning-applications/ with beta as a scaling factor.")] 30 30 public class InverseMultiquadraticKernel : KernelBase { -
branches/PersistenceReintegration/HeuristicLab.Algorithms.DataAnalysis/3.4/KernelRidgeRegression/KernelFunctions/KernelBase.cs
r14887 r14927 26 26 using HeuristicLab.Core; 27 27 using HeuristicLab.Parameters; 28 using HeuristicLab.Persistence .Default.CompositeSerializers.Storable;28 using HeuristicLab.Persistence; 29 29 30 30 namespace HeuristicLab.Algorithms.DataAnalysis.KernelRidgeRegression { 31 [Storable Class]31 [StorableType("c6e3751a-1eab-4068-af73-e39f52cded26")] 32 32 public abstract class KernelBase : ParameterizedNamedItem, IKernel { 33 33 -
branches/PersistenceReintegration/HeuristicLab.Algorithms.DataAnalysis/3.4/KernelRidgeRegression/KernelFunctions/MultiquadraticKernel.cs
r14891 r14927 23 23 using HeuristicLab.Common; 24 24 using HeuristicLab.Core; 25 using HeuristicLab.Persistence .Default.CompositeSerializers.Storable;25 using HeuristicLab.Persistence; 26 26 27 27 namespace HeuristicLab.Algorithms.DataAnalysis.KernelRidgeRegression { 28 [Storable Class]28 [StorableType("65ab934e-630c-4c70-8767-2ea1df20abd1")] 29 29 // conditionally positive definite. (need to add polynomials) see http://num.math.uni-goettingen.de/schaback/teaching/sc.pdf 30 30 [Item("MultiquadraticKernel", "A kernel function that uses the multi-quadratic function sqrt(1+||x-c||²/beta²). Similar to http://crsouza.com/2010/03/17/kernel-functions-for-machine-learning-applications/ with beta as a scaling factor.")] -
branches/PersistenceReintegration/HeuristicLab.Algorithms.DataAnalysis/3.4/KernelRidgeRegression/KernelFunctions/PolysplineKernel.cs
r14892 r14927 25 25 using HeuristicLab.Data; 26 26 using HeuristicLab.Parameters; 27 using HeuristicLab.Persistence .Default.CompositeSerializers.Storable;27 using HeuristicLab.Persistence; 28 28 29 29 namespace HeuristicLab.Algorithms.DataAnalysis.KernelRidgeRegression { 30 [Storable Class]30 [StorableType("424d1640-3752-4e6e-a749-58ddf0332bbf")] 31 31 // conditionally positive definite. (need to add polynomials) see http://num.math.uni-goettingen.de/schaback/teaching/sc.pdf 32 32 [Item("PolysplineKernel", "A kernel function that uses the polyharmonic function (||x-c||/Beta)^Degree as given in http://num.math.uni-goettingen.de/schaback/teaching/sc.pdf with beta as a scaling parameters.")] -
branches/PersistenceReintegration/HeuristicLab.Algorithms.DataAnalysis/3.4/KernelRidgeRegression/KernelFunctions/ThinPlatePolysplineKernel.cs
r14892 r14927 25 25 using HeuristicLab.Data; 26 26 using HeuristicLab.Parameters; 27 using HeuristicLab.Persistence .Default.CompositeSerializers.Storable;27 using HeuristicLab.Persistence; 28 28 29 29 namespace HeuristicLab.Algorithms.DataAnalysis.KernelRidgeRegression { 30 [Storable Class]30 [StorableType("448226e7-bdac-4269-a306-e8fb398cae33")] 31 31 // conditionally positive definite. (need to add polynomials) see http://num.math.uni-goettingen.de/schaback/teaching/sc.pdf 32 32 [Item("ThinPlatePolysplineKernel", "A kernel function that uses the ThinPlatePolyspline function (||x-c||/Beta)^(Degree)*log(||x-c||/Beta) as described in \"Thin-Plate Spline Radial Basis Function Scheme for Advection-Diffusion Problems\" with beta as a scaling parameter.")]
Note: See TracChangeset
for help on using the changeset viewer.