Free cookie consent management tool by TermsFeed Policy Generator

Ignore:
Timestamp:
04/14/17 08:58:45 (8 years ago)
Author:
gkronber
Message:

#2699: merged changesets from trunk to branch

Location:
branches/RBFRegression/HeuristicLab.Algorithms.DataAnalysis/3.4
Files:
7 edited

Legend:

Unmodified
Added
Removed
  • branches/RBFRegression/HeuristicLab.Algorithms.DataAnalysis/3.4

    • Property svn:mergeinfo set to (toggle deleted branches)
      /stable/HeuristicLab.Algorithms.DataAnalysis/3.4mergedeligible
      /trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4mergedeligible
      /branches/1721-RandomForestPersistence/HeuristicLab.Algorithms.DataAnalysis/3.410321-10322
      /branches/Benchmarking/sources/HeuristicLab.Algorithms.DataAnalysis/3.46917-7005
      /branches/ClassificationModelComparison/HeuristicLab.Algorithms.DataAnalysis/3.49070-13099
      /branches/CloningRefactoring/HeuristicLab.Algorithms.DataAnalysis/3.44656-4721
      /branches/DataAnalysis Refactoring/HeuristicLab.Algorithms.DataAnalysis/3.45471-5808
      /branches/DataAnalysis SolutionEnsembles/HeuristicLab.Algorithms.DataAnalysis/3.45815-6180
      /branches/DataAnalysis/HeuristicLab.Algorithms.DataAnalysis/3.44458-4459,​4462,​4464
      /branches/DataPreprocessing/HeuristicLab.Algorithms.DataAnalysis/3.410085-11101
      /branches/GP.Grammar.Editor/HeuristicLab.Algorithms.DataAnalysis/3.46284-6795
      /branches/GP.Symbols (TimeLag, Diff, Integral)/HeuristicLab.Algorithms.DataAnalysis/3.45060
      /branches/HeuristicLab.DatasetRefactor/sources/HeuristicLab.Algorithms.DataAnalysis/3.411570-12508
      /branches/HeuristicLab.Problems.Orienteering/HeuristicLab.Algorithms.DataAnalysis/3.411130-12721
      /branches/HeuristicLab.RegressionSolutionGradientView/HeuristicLab.Algorithms.DataAnalysis/3.413819-14091
      /branches/HeuristicLab.TimeSeries/HeuristicLab.Algorithms.DataAnalysis/3.48116-8789
      /branches/LogResidualEvaluator/HeuristicLab.Algorithms.DataAnalysis/3.410202-10483
      /branches/NET40/sources/HeuristicLab.Algorithms.DataAnalysis/3.45138-5162
      /branches/ParallelEngine/HeuristicLab.Algorithms.DataAnalysis/3.45175-5192
      /branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Algorithms.DataAnalysis/3.47773-7810
      /branches/QAPAlgorithms/HeuristicLab.Algorithms.DataAnalysis/3.46350-6627
      /branches/Restructure trunk solution/HeuristicLab.Algorithms.DataAnalysis/3.46828
      /branches/SpectralKernelForGaussianProcesses/HeuristicLab.Algorithms.DataAnalysis/3.410204-10479
      /branches/SuccessProgressAnalysis/HeuristicLab.Algorithms.DataAnalysis/3.45370-5682
      /branches/Trunk/HeuristicLab.Algorithms.DataAnalysis/3.46829-6865
      /branches/VNS/HeuristicLab.Algorithms.DataAnalysis/3.45594-5752
      /branches/histogram/HeuristicLab.Algorithms.DataAnalysis/3.45959-6341
  • branches/RBFRegression/HeuristicLab.Algorithms.DataAnalysis/3.4/NeuralNetwork/NeuralNetworkClassification.cs

    r14185 r14869  
    2323using System.Collections.Generic;
    2424using System.Linq;
     25using System.Threading;
    2526using HeuristicLab.Common;
    2627using HeuristicLab.Core;
     
    168169
    169170    #region neural network
    170     protected override void Run() {
     171    protected override void Run(CancellationToken cancellationToken) {
    171172      double rmsError, avgRelError, relClassError;
    172173      var solution = CreateNeuralNetworkClassificationSolution(Problem.ProblemData, HiddenLayers, NodesInFirstHiddenLayer, NodesInSecondHiddenLayer, Decay, Restarts, out rmsError, out avgRelError, out relClassError);
     
    183184      IEnumerable<string> allowedInputVariables = problemData.AllowedInputVariables;
    184185      IEnumerable<int> rows = problemData.TrainingIndices;
    185       double[,] inputMatrix = AlglibUtil.PrepareInputMatrix(dataset, allowedInputVariables.Concat(new string[] { targetVariable }), rows);
     186      double[,] inputMatrix = dataset.ToArray(allowedInputVariables.Concat(new string[] { targetVariable }), rows);
    186187      if (inputMatrix.Cast<double>().Any(x => double.IsNaN(x) || double.IsInfinity(x)))
    187188        throw new NotSupportedException("Neural network classification does not support NaN or infinity values in the input dataset.");
  • branches/RBFRegression/HeuristicLab.Algorithms.DataAnalysis/3.4/NeuralNetwork/NeuralNetworkEnsembleClassification.cs

    r14185 r14869  
    2323using System.Collections.Generic;
    2424using System.Linq;
     25using System.Threading;
    2526using HeuristicLab.Common;
    2627using HeuristicLab.Core;
     
    124125    public NeuralNetworkEnsembleClassification()
    125126      : base() {
    126       var validHiddenLayerValues = new ItemSet<IntValue>(new IntValue[] { 
    127         (IntValue)new IntValue(0).AsReadOnly(), 
    128         (IntValue)new IntValue(1).AsReadOnly(), 
     127      var validHiddenLayerValues = new ItemSet<IntValue>(new IntValue[] {
     128        (IntValue)new IntValue(0).AsReadOnly(),
     129        (IntValue)new IntValue(1).AsReadOnly(),
    129130        (IntValue)new IntValue(2).AsReadOnly() });
    130131      var selectedHiddenLayerValue = (from v in validHiddenLayerValues
     
    154155
    155156    #region neural network ensemble
    156     protected override void Run() {
     157    protected override void Run(CancellationToken cancellationToken) {
    157158      double rmsError, avgRelError, relClassError;
    158159      var solution = CreateNeuralNetworkEnsembleClassificationSolution(Problem.ProblemData, EnsembleSize, HiddenLayers, NodesInFirstHiddenLayer, NodesInSecondHiddenLayer, Decay, Restarts, out rmsError, out avgRelError, out relClassError);
     
    169170      IEnumerable<string> allowedInputVariables = problemData.AllowedInputVariables;
    170171      IEnumerable<int> rows = problemData.TrainingIndices;
    171       double[,] inputMatrix = AlglibUtil.PrepareInputMatrix(dataset, allowedInputVariables.Concat(new string[] { targetVariable }), rows);
     172      double[,] inputMatrix = dataset.ToArray(allowedInputVariables.Concat(new string[] { targetVariable }), rows);
    172173      if (inputMatrix.Cast<double>().Any(x => double.IsNaN(x) || double.IsInfinity(x)))
    173174        throw new NotSupportedException("Neural network ensemble classification does not support NaN or infinity values in the input dataset.");
  • branches/RBFRegression/HeuristicLab.Algorithms.DataAnalysis/3.4/NeuralNetwork/NeuralNetworkEnsembleModel.cs

    r14185 r14869  
    9191
    9292    public IEnumerable<double> GetEstimatedValues(IDataset dataset, IEnumerable<int> rows) {
    93       double[,] inputData = AlglibUtil.PrepareInputMatrix(dataset, allowedInputVariables, rows);
     93      double[,] inputData = dataset.ToArray(allowedInputVariables, rows);
    9494
    9595      int n = inputData.GetLength(0);
     
    108108
    109109    public override IEnumerable<double> GetEstimatedClassValues(IDataset dataset, IEnumerable<int> rows) {
    110       double[,] inputData = AlglibUtil.PrepareInputMatrix(dataset, allowedInputVariables, rows);
     110      double[,] inputData = dataset.ToArray(allowedInputVariables, rows);
    111111
    112112      int n = inputData.GetLength(0);
  • branches/RBFRegression/HeuristicLab.Algorithms.DataAnalysis/3.4/NeuralNetwork/NeuralNetworkEnsembleRegression.cs

    r14185 r14869  
    2323using System.Collections.Generic;
    2424using System.Linq;
     25using System.Threading;
    2526using HeuristicLab.Common;
    2627using HeuristicLab.Core;
     
    154155
    155156    #region neural network ensemble
    156     protected override void Run() {
     157    protected override void Run(CancellationToken cancellationToken) {
    157158      double rmsError, avgRelError;
    158159      var solution = CreateNeuralNetworkEnsembleRegressionSolution(Problem.ProblemData, EnsembleSize, HiddenLayers, NodesInFirstHiddenLayer, NodesInSecondHiddenLayer, Decay, Restarts, out rmsError, out avgRelError);
     
    168169      IEnumerable<string> allowedInputVariables = problemData.AllowedInputVariables;
    169170      IEnumerable<int> rows = problemData.TrainingIndices;
    170       double[,] inputMatrix = AlglibUtil.PrepareInputMatrix(dataset, allowedInputVariables.Concat(new string[] { targetVariable }), rows);
     171      double[,] inputMatrix = dataset.ToArray(allowedInputVariables.Concat(new string[] { targetVariable }), rows);
    171172      if (inputMatrix.Cast<double>().Any(x => double.IsNaN(x) || double.IsInfinity(x)))
    172173        throw new NotSupportedException("Neural network ensemble regression does not support NaN or infinity values in the input dataset.");
  • branches/RBFRegression/HeuristicLab.Algorithms.DataAnalysis/3.4/NeuralNetwork/NeuralNetworkModel.cs

    r14185 r14869  
    9595
    9696    public IEnumerable<double> GetEstimatedValues(IDataset dataset, IEnumerable<int> rows) {
    97       double[,] inputData = AlglibUtil.PrepareInputMatrix(dataset, allowedInputVariables, rows);
     97      double[,] inputData = dataset.ToArray(allowedInputVariables, rows);
    9898
    9999      int n = inputData.GetLength(0);
     
    112112
    113113    public override IEnumerable<double> GetEstimatedClassValues(IDataset dataset, IEnumerable<int> rows) {
    114       double[,] inputData = AlglibUtil.PrepareInputMatrix(dataset, allowedInputVariables, rows);
     114      double[,] inputData = dataset.ToArray( allowedInputVariables, rows);
    115115
    116116      int n = inputData.GetLength(0);
  • branches/RBFRegression/HeuristicLab.Algorithms.DataAnalysis/3.4/NeuralNetwork/NeuralNetworkRegression.cs

    r14185 r14869  
    2323using System.Collections.Generic;
    2424using System.Linq;
     25using System.Threading;
    2526using HeuristicLab.Common;
    2627using HeuristicLab.Core;
     
    170171
    171172    #region neural network
    172     protected override void Run() {
     173    protected override void Run(CancellationToken cancellationToken) {
    173174      double rmsError, avgRelError;
    174175      var solution = CreateNeuralNetworkRegressionSolution(Problem.ProblemData, HiddenLayers, NodesInFirstHiddenLayer, NodesInSecondHiddenLayer, Decay, Restarts, out rmsError, out avgRelError);
     
    184185      IEnumerable<string> allowedInputVariables = problemData.AllowedInputVariables;
    185186      IEnumerable<int> rows = problemData.TrainingIndices;
    186       double[,] inputMatrix = AlglibUtil.PrepareInputMatrix(dataset, allowedInputVariables.Concat(new string[] { targetVariable }), rows);
     187      double[,] inputMatrix = dataset.ToArray(allowedInputVariables.Concat(new string[] { targetVariable }), rows);
    187188      if (inputMatrix.Cast<double>().Any(x => double.IsNaN(x) || double.IsInfinity(x)))
    188189        throw new NotSupportedException("Neural network regression does not support NaN or infinity values in the input dataset.");
Note: See TracChangeset for help on using the changeset viewer.