- Timestamp:
- 04/14/17 08:58:45 (8 years ago)
- Location:
- branches/RBFRegression/HeuristicLab.Algorithms.DataAnalysis/3.4
- Files:
-
- 7 edited
Legend:
- Unmodified
- Added
- Removed
-
branches/RBFRegression/HeuristicLab.Algorithms.DataAnalysis/3.4
-
Property
svn:mergeinfo
set to
(toggle deleted branches)
/stable/HeuristicLab.Algorithms.DataAnalysis/3.4 merged eligible /trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4 merged eligible /branches/1721-RandomForestPersistence/HeuristicLab.Algorithms.DataAnalysis/3.4 10321-10322 /branches/Benchmarking/sources/HeuristicLab.Algorithms.DataAnalysis/3.4 6917-7005 /branches/ClassificationModelComparison/HeuristicLab.Algorithms.DataAnalysis/3.4 9070-13099 /branches/CloningRefactoring/HeuristicLab.Algorithms.DataAnalysis/3.4 4656-4721 /branches/DataAnalysis Refactoring/HeuristicLab.Algorithms.DataAnalysis/3.4 5471-5808 /branches/DataAnalysis SolutionEnsembles/HeuristicLab.Algorithms.DataAnalysis/3.4 5815-6180 /branches/DataAnalysis/HeuristicLab.Algorithms.DataAnalysis/3.4 4458-4459,4462,4464 /branches/DataPreprocessing/HeuristicLab.Algorithms.DataAnalysis/3.4 10085-11101 /branches/GP.Grammar.Editor/HeuristicLab.Algorithms.DataAnalysis/3.4 6284-6795 /branches/GP.Symbols (TimeLag, Diff, Integral)/HeuristicLab.Algorithms.DataAnalysis/3.4 5060 /branches/HeuristicLab.DatasetRefactor/sources/HeuristicLab.Algorithms.DataAnalysis/3.4 11570-12508 /branches/HeuristicLab.Problems.Orienteering/HeuristicLab.Algorithms.DataAnalysis/3.4 11130-12721 /branches/HeuristicLab.RegressionSolutionGradientView/HeuristicLab.Algorithms.DataAnalysis/3.4 13819-14091 /branches/HeuristicLab.TimeSeries/HeuristicLab.Algorithms.DataAnalysis/3.4 8116-8789 /branches/LogResidualEvaluator/HeuristicLab.Algorithms.DataAnalysis/3.4 10202-10483 /branches/NET40/sources/HeuristicLab.Algorithms.DataAnalysis/3.4 5138-5162 /branches/ParallelEngine/HeuristicLab.Algorithms.DataAnalysis/3.4 5175-5192 /branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Algorithms.DataAnalysis/3.4 7773-7810 /branches/QAPAlgorithms/HeuristicLab.Algorithms.DataAnalysis/3.4 6350-6627 /branches/Restructure trunk solution/HeuristicLab.Algorithms.DataAnalysis/3.4 6828 /branches/SpectralKernelForGaussianProcesses/HeuristicLab.Algorithms.DataAnalysis/3.4 10204-10479 /branches/SuccessProgressAnalysis/HeuristicLab.Algorithms.DataAnalysis/3.4 5370-5682 /branches/Trunk/HeuristicLab.Algorithms.DataAnalysis/3.4 6829-6865 /branches/VNS/HeuristicLab.Algorithms.DataAnalysis/3.4 5594-5752 /branches/histogram/HeuristicLab.Algorithms.DataAnalysis/3.4 5959-6341
-
Property
svn:mergeinfo
set to
(toggle deleted branches)
-
branches/RBFRegression/HeuristicLab.Algorithms.DataAnalysis/3.4/NeuralNetwork/NeuralNetworkClassification.cs
r14185 r14869 23 23 using System.Collections.Generic; 24 24 using System.Linq; 25 using System.Threading; 25 26 using HeuristicLab.Common; 26 27 using HeuristicLab.Core; … … 168 169 169 170 #region neural network 170 protected override void Run( ) {171 protected override void Run(CancellationToken cancellationToken) { 171 172 double rmsError, avgRelError, relClassError; 172 173 var solution = CreateNeuralNetworkClassificationSolution(Problem.ProblemData, HiddenLayers, NodesInFirstHiddenLayer, NodesInSecondHiddenLayer, Decay, Restarts, out rmsError, out avgRelError, out relClassError); … … 183 184 IEnumerable<string> allowedInputVariables = problemData.AllowedInputVariables; 184 185 IEnumerable<int> rows = problemData.TrainingIndices; 185 double[,] inputMatrix = AlglibUtil.PrepareInputMatrix(dataset,allowedInputVariables.Concat(new string[] { targetVariable }), rows);186 double[,] inputMatrix = dataset.ToArray(allowedInputVariables.Concat(new string[] { targetVariable }), rows); 186 187 if (inputMatrix.Cast<double>().Any(x => double.IsNaN(x) || double.IsInfinity(x))) 187 188 throw new NotSupportedException("Neural network classification does not support NaN or infinity values in the input dataset."); -
branches/RBFRegression/HeuristicLab.Algorithms.DataAnalysis/3.4/NeuralNetwork/NeuralNetworkEnsembleClassification.cs
r14185 r14869 23 23 using System.Collections.Generic; 24 24 using System.Linq; 25 using System.Threading; 25 26 using HeuristicLab.Common; 26 27 using HeuristicLab.Core; … … 124 125 public NeuralNetworkEnsembleClassification() 125 126 : base() { 126 var validHiddenLayerValues = new ItemSet<IntValue>(new IntValue[] { 127 (IntValue)new IntValue(0).AsReadOnly(), 128 (IntValue)new IntValue(1).AsReadOnly(), 127 var validHiddenLayerValues = new ItemSet<IntValue>(new IntValue[] { 128 (IntValue)new IntValue(0).AsReadOnly(), 129 (IntValue)new IntValue(1).AsReadOnly(), 129 130 (IntValue)new IntValue(2).AsReadOnly() }); 130 131 var selectedHiddenLayerValue = (from v in validHiddenLayerValues … … 154 155 155 156 #region neural network ensemble 156 protected override void Run( ) {157 protected override void Run(CancellationToken cancellationToken) { 157 158 double rmsError, avgRelError, relClassError; 158 159 var solution = CreateNeuralNetworkEnsembleClassificationSolution(Problem.ProblemData, EnsembleSize, HiddenLayers, NodesInFirstHiddenLayer, NodesInSecondHiddenLayer, Decay, Restarts, out rmsError, out avgRelError, out relClassError); … … 169 170 IEnumerable<string> allowedInputVariables = problemData.AllowedInputVariables; 170 171 IEnumerable<int> rows = problemData.TrainingIndices; 171 double[,] inputMatrix = AlglibUtil.PrepareInputMatrix(dataset,allowedInputVariables.Concat(new string[] { targetVariable }), rows);172 double[,] inputMatrix = dataset.ToArray(allowedInputVariables.Concat(new string[] { targetVariable }), rows); 172 173 if (inputMatrix.Cast<double>().Any(x => double.IsNaN(x) || double.IsInfinity(x))) 173 174 throw new NotSupportedException("Neural network ensemble classification does not support NaN or infinity values in the input dataset."); -
branches/RBFRegression/HeuristicLab.Algorithms.DataAnalysis/3.4/NeuralNetwork/NeuralNetworkEnsembleModel.cs
r14185 r14869 91 91 92 92 public IEnumerable<double> GetEstimatedValues(IDataset dataset, IEnumerable<int> rows) { 93 double[,] inputData = AlglibUtil.PrepareInputMatrix(dataset,allowedInputVariables, rows);93 double[,] inputData = dataset.ToArray(allowedInputVariables, rows); 94 94 95 95 int n = inputData.GetLength(0); … … 108 108 109 109 public override IEnumerable<double> GetEstimatedClassValues(IDataset dataset, IEnumerable<int> rows) { 110 double[,] inputData = AlglibUtil.PrepareInputMatrix(dataset,allowedInputVariables, rows);110 double[,] inputData = dataset.ToArray(allowedInputVariables, rows); 111 111 112 112 int n = inputData.GetLength(0); -
branches/RBFRegression/HeuristicLab.Algorithms.DataAnalysis/3.4/NeuralNetwork/NeuralNetworkEnsembleRegression.cs
r14185 r14869 23 23 using System.Collections.Generic; 24 24 using System.Linq; 25 using System.Threading; 25 26 using HeuristicLab.Common; 26 27 using HeuristicLab.Core; … … 154 155 155 156 #region neural network ensemble 156 protected override void Run( ) {157 protected override void Run(CancellationToken cancellationToken) { 157 158 double rmsError, avgRelError; 158 159 var solution = CreateNeuralNetworkEnsembleRegressionSolution(Problem.ProblemData, EnsembleSize, HiddenLayers, NodesInFirstHiddenLayer, NodesInSecondHiddenLayer, Decay, Restarts, out rmsError, out avgRelError); … … 168 169 IEnumerable<string> allowedInputVariables = problemData.AllowedInputVariables; 169 170 IEnumerable<int> rows = problemData.TrainingIndices; 170 double[,] inputMatrix = AlglibUtil.PrepareInputMatrix(dataset,allowedInputVariables.Concat(new string[] { targetVariable }), rows);171 double[,] inputMatrix = dataset.ToArray(allowedInputVariables.Concat(new string[] { targetVariable }), rows); 171 172 if (inputMatrix.Cast<double>().Any(x => double.IsNaN(x) || double.IsInfinity(x))) 172 173 throw new NotSupportedException("Neural network ensemble regression does not support NaN or infinity values in the input dataset."); -
branches/RBFRegression/HeuristicLab.Algorithms.DataAnalysis/3.4/NeuralNetwork/NeuralNetworkModel.cs
r14185 r14869 95 95 96 96 public IEnumerable<double> GetEstimatedValues(IDataset dataset, IEnumerable<int> rows) { 97 double[,] inputData = AlglibUtil.PrepareInputMatrix(dataset,allowedInputVariables, rows);97 double[,] inputData = dataset.ToArray(allowedInputVariables, rows); 98 98 99 99 int n = inputData.GetLength(0); … … 112 112 113 113 public override IEnumerable<double> GetEstimatedClassValues(IDataset dataset, IEnumerable<int> rows) { 114 double[,] inputData = AlglibUtil.PrepareInputMatrix(dataset,allowedInputVariables, rows);114 double[,] inputData = dataset.ToArray( allowedInputVariables, rows); 115 115 116 116 int n = inputData.GetLength(0); -
branches/RBFRegression/HeuristicLab.Algorithms.DataAnalysis/3.4/NeuralNetwork/NeuralNetworkRegression.cs
r14185 r14869 23 23 using System.Collections.Generic; 24 24 using System.Linq; 25 using System.Threading; 25 26 using HeuristicLab.Common; 26 27 using HeuristicLab.Core; … … 170 171 171 172 #region neural network 172 protected override void Run( ) {173 protected override void Run(CancellationToken cancellationToken) { 173 174 double rmsError, avgRelError; 174 175 var solution = CreateNeuralNetworkRegressionSolution(Problem.ProblemData, HiddenLayers, NodesInFirstHiddenLayer, NodesInSecondHiddenLayer, Decay, Restarts, out rmsError, out avgRelError); … … 184 185 IEnumerable<string> allowedInputVariables = problemData.AllowedInputVariables; 185 186 IEnumerable<int> rows = problemData.TrainingIndices; 186 double[,] inputMatrix = AlglibUtil.PrepareInputMatrix(dataset,allowedInputVariables.Concat(new string[] { targetVariable }), rows);187 double[,] inputMatrix = dataset.ToArray(allowedInputVariables.Concat(new string[] { targetVariable }), rows); 187 188 if (inputMatrix.Cast<double>().Any(x => double.IsNaN(x) || double.IsInfinity(x))) 188 189 throw new NotSupportedException("Neural network regression does not support NaN or infinity values in the input dataset.");
Note: See TracChangeset
for help on using the changeset viewer.