Free cookie consent management tool by TermsFeed Policy Generator

Ignore:
Timestamp:
04/11/17 15:55:44 (8 years ago)
Author:
gkronber
Message:

#2697: applied r14390, r14391, r14393, r14394, r14396 again (resolving conflicts)

Location:
trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4
Files:
1 deleted
21 edited

Legend:

Unmodified
Added
Removed
  • trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/GaussianProcess/GaussianProcessModel.cs

    r14400 r14843  
    165165      try {
    166166        CalculateModel(ds, rows, scaleInputs);
    167       }
    168       catch (alglib.alglibexception ae) {
     167      } catch (alglib.alglibexception ae) {
    169168        // wrap exception so that calling code doesn't have to know about alglib implementation
    170169        throw new ArgumentException("There was a problem in the calculation of the Gaussian process model", ae);
     
    260259    private static double[,] GetData(IDataset ds, IEnumerable<string> allowedInputs, IEnumerable<int> rows, Scaling scaling) {
    261260      if (scaling != null) {
    262         return AlglibUtil.PrepareAndScaleInputMatrix(ds, allowedInputs, rows, scaling);
     261        // TODO: completely remove Scaling class
     262        List<ITransformation<double>> transformations = new List<ITransformation<double>>();
     263
     264        foreach (var varName in allowedInputs) {
     265          double min;
     266          double max;
     267          scaling.GetScalingParameters(varName, out min, out max);
     268          var add = -min / (max - min);
     269          var mult = 1.0 / (max - min);
     270          transformations.Add(new LinearTransformation(allowedInputs) { Addend = add, Multiplier = mult });
     271        }
     272        return ds.ToArray(allowedInputs, transformations, rows);
    263273      } else {
    264         return AlglibUtil.PrepareInputMatrix(ds, allowedInputs, rows);
     274        return ds.ToArray(allowedInputs, rows);
    265275      }
    266276    }
     
    334344        return Enumerable.Range(0, newN)
    335345          .Select(i => ms[i] + Util.ScalarProd(Ks[i], alpha));
    336       }
    337       catch (alglib.alglibexception ae) {
     346      } catch (alglib.alglibexception ae) {
    338347        // wrap exception so that calling code doesn't have to know about alglib implementation
    339348        throw new ArgumentException("There was a problem in the calculation of the Gaussian process model", ae);
     
    381390        }
    382391        return kss;
    383       }
    384       catch (alglib.alglibexception ae) {
     392      } catch (alglib.alglibexception ae) {
    385393        // wrap exception so that calling code doesn't have to know about alglib implementation
    386394        throw new ArgumentException("There was a problem in the calculation of the Gaussian process model", ae);
  • trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/HeuristicLab.Algorithms.DataAnalysis-3.4.csproj

    r14826 r14843  
    246246      <SubType>Code</SubType>
    247247    </Compile>
    248     <Compile Include="Linear\AlglibUtil.cs" />
    249     <Compile Include="Linear\Scaling.cs" />
    250248    <Compile Include="Linear\LinearDiscriminantAnalysis.cs" />
    251249    <Compile Include="Linear\LinearRegression.cs">
     
    255253    <Compile Include="Linear\MultinomialLogitClassificationSolution.cs" />
    256254    <Compile Include="Linear\MultinomialLogitModel.cs" />
     255    <Compile Include="Linear\Scaling.cs" />
    257256    <Compile Include="MctsSymbolicRegression\Automaton.cs" />
    258257    <Compile Include="MctsSymbolicRegression\CodeGenerator.cs" />
  • trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/Linear/LinearDiscriminantAnalysis.cs

    r14826 r14843  
    7373      var doubleVariableNames = allowedInputVariables.Where(dataset.VariableHasType<double>).ToArray();
    7474      var factorVariableNames = allowedInputVariables.Where(dataset.VariableHasType<string>).ToArray();
    75       double[,] inputMatrix = AlglibUtil.PrepareInputMatrix(dataset, doubleVariableNames.Concat(new string[] { targetVariable }), rows);
     75      double[,] inputMatrix = dataset.ToArray(doubleVariableNames.Concat(new string[] { targetVariable }), rows);
    7676
    77       var factorVariables = AlglibUtil.GetFactorVariableValues(dataset, factorVariableNames, rows);
    78       double[,] factorMatrix = AlglibUtil.PrepareInputMatrix(dataset, factorVariables, rows);
     77      var factorVariables = dataset.GetFactorVariableValues(factorVariableNames, rows);
     78      var factorMatrix = dataset.ToArray(factorVariables, rows);
    7979
    8080      inputMatrix = factorMatrix.HorzCat(inputMatrix);
     
    9494      if (info < 1) throw new ArgumentException("Error in calculation of linear discriminant analysis solution");
    9595
    96       ISymbolicExpressionTree tree = new SymbolicExpressionTree(new ProgramRootSymbol().CreateTreeNode());
    97       ISymbolicExpressionTreeNode startNode = new StartSymbol().CreateTreeNode();
    98       tree.Root.AddSubtree(startNode);
    99       ISymbolicExpressionTreeNode addition = new Addition().CreateTreeNode();
    100       startNode.AddSubtree(addition);
    101 
    102       int col = 0;
    103       foreach (var kvp in factorVariables) {
    104         var varName = kvp.Key;
    105         foreach (var cat in kvp.Value) {
    106           BinaryFactorVariableTreeNode vNode =
    107             (BinaryFactorVariableTreeNode)new HeuristicLab.Problems.DataAnalysis.Symbolic.BinaryFactorVariable().CreateTreeNode();
    108           vNode.VariableName = varName;
    109           vNode.VariableValue = cat;
    110           vNode.Weight = w[col];
    111           addition.AddSubtree(vNode);
    112           col++;
    113         }
    114       }
    115       foreach (string column in doubleVariableNames) {
    116         VariableTreeNode vNode = (VariableTreeNode)new HeuristicLab.Problems.DataAnalysis.Symbolic.Variable().CreateTreeNode();
    117         vNode.VariableName = column;
    118         vNode.Weight = w[col];
    119         addition.AddSubtree(vNode);
    120         col++;
    121       }
     96      var nFactorCoeff = factorMatrix.GetLength(1);
     97      var tree = LinearModelToTreeConverter.CreateTree(factorVariables, w.Take(nFactorCoeff).ToArray(),
     98        doubleVariableNames, w.Skip(nFactorCoeff).Take(doubleVariableNames.Length).ToArray());
    12299
    123100      var model = CreateDiscriminantFunctionModel(tree, new SymbolicDataAnalysisExpressionTreeLinearInterpreter(), problemData, rows);
  • trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/Linear/LinearRegression.cs

    r14826 r14843  
    7676      var doubleVariables = allowedInputVariables.Where(dataset.VariableHasType<double>);
    7777      var factorVariableNames = allowedInputVariables.Where(dataset.VariableHasType<string>);
    78       var factorVariables = AlglibUtil.GetFactorVariableValues(dataset, factorVariableNames, rows);
    79       double[,] binaryMatrix = AlglibUtil.PrepareInputMatrix(dataset, factorVariables, rows);
    80       double[,] doubleVarMatrix = AlglibUtil.PrepareInputMatrix(dataset, doubleVariables.Concat(new string[] { targetVariable }), rows);
     78      var factorVariables = dataset.GetFactorVariableValues(factorVariableNames, rows);
     79      double[,] binaryMatrix = dataset.ToArray(factorVariables, rows);
     80      double[,] doubleVarMatrix = dataset.ToArray(doubleVariables.Concat(new string[] { targetVariable }), rows);
    8181      var inputMatrix = binaryMatrix.HorzCat(doubleVarMatrix);
    8282
     
    9898      alglib.lrunpack(lm, out coefficients, out nFeatures);
    9999
    100       ISymbolicExpressionTree tree = new SymbolicExpressionTree(new ProgramRootSymbol().CreateTreeNode());
    101       ISymbolicExpressionTreeNode startNode = new StartSymbol().CreateTreeNode();
    102       tree.Root.AddSubtree(startNode);
    103       ISymbolicExpressionTreeNode addition = new Addition().CreateTreeNode();
    104       startNode.AddSubtree(addition);
    105 
    106       int col = 0;
    107       foreach (var kvp in factorVariables) {
    108         var varName = kvp.Key;
    109         foreach (var cat in kvp.Value) {
    110           BinaryFactorVariableTreeNode vNode =
    111             (BinaryFactorVariableTreeNode)new HeuristicLab.Problems.DataAnalysis.Symbolic.BinaryFactorVariable().CreateTreeNode();
    112           vNode.VariableName = varName;
    113           vNode.VariableValue = cat;
    114           vNode.Weight = coefficients[col];
    115           addition.AddSubtree(vNode);
    116           col++;
    117         }
    118       }
    119       foreach (string column in doubleVariables) {
    120         VariableTreeNode vNode = (VariableTreeNode)new HeuristicLab.Problems.DataAnalysis.Symbolic.Variable().CreateTreeNode();
    121         vNode.VariableName = column;
    122         vNode.Weight = coefficients[col];
    123         addition.AddSubtree(vNode);
    124         col++;
    125       }
    126 
    127       ConstantTreeNode cNode = (ConstantTreeNode)new Constant().CreateTreeNode();
    128       cNode.Value = coefficients[coefficients.Length - 1];
    129       addition.AddSubtree(cNode);
    130 
     100      int nFactorCoeff = binaryMatrix.GetLength(1);
     101      int nVarCoeff = doubleVariables.Count();
     102      var tree = LinearModelToTreeConverter.CreateTree(factorVariables, coefficients.Take(nFactorCoeff).ToArray(),
     103        doubleVariables.ToArray(), coefficients.Skip(nFactorCoeff).Take(nVarCoeff).ToArray(),
     104        @const: coefficients[nFeatures]);
     105     
    131106      SymbolicRegressionSolution solution = new SymbolicRegressionSolution(new SymbolicRegressionModel(problemData.TargetVariable, tree, new SymbolicDataAnalysisExpressionTreeLinearInterpreter()), (IRegressionProblemData)problemData.Clone());
    132107      solution.Model.Name = "Linear Regression Model";
  • trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/Linear/MultinomialLogitClassification.cs

    r14826 r14843  
    7272      var factorVariableNames = problemData.AllowedInputVariables.Where(dataset.VariableHasType<string>);
    7373      IEnumerable<int> rows = problemData.TrainingIndices;
    74       double[,] inputMatrix = AlglibUtil.PrepareInputMatrix(dataset, doubleVariableNames.Concat(new string[] { targetVariable }), rows);
     74      double[,] inputMatrix = dataset.ToArray(doubleVariableNames.Concat(new string[] { targetVariable }), rows);
    7575
    76       var factorVariableValues = AlglibUtil.GetFactorVariableValues(dataset, factorVariableNames, rows);
    77       var factorMatrix = AlglibUtil.PrepareInputMatrix(dataset, factorVariableValues, rows);
     76      var factorVariableValues = dataset.GetFactorVariableValues(factorVariableNames, rows);
     77      var factorMatrix = dataset.ToArray(factorVariableValues, rows);
    7878      inputMatrix = factorMatrix.HorzCat(inputMatrix);
    7979
  • trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/Linear/MultinomialLogitModel.cs

    r14826 r14843  
    9797    public override IEnumerable<double> GetEstimatedClassValues(IDataset dataset, IEnumerable<int> rows) {
    9898
    99       double[,] inputData = AlglibUtil.PrepareInputMatrix(dataset, allowedInputVariables, rows);
    100       double[,] factorData = AlglibUtil.PrepareInputMatrix(dataset, factorVariables, rows);
     99      double[,] inputData = dataset.ToArray(allowedInputVariables, rows);
     100      double[,] factorData = dataset.ToArray(factorVariables, rows);
    101101
    102102      inputData = factorData.HorzCat(inputData);
  • trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/Linear/Scaling.cs

    r14400 r14843  
    2929
    3030namespace HeuristicLab.Algorithms.DataAnalysis {
     31  [Obsolete("Use transformation classes in Problems.DataAnalysis instead")]
    3132  [StorableClass]
    3233  [Item(Name = "Scaling", Description = "Contains information about scaling of variables for data-analysis algorithms.")]
  • trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/Nca/Initialization/LdaInitializer.cs

    r14400 r14843  
    4444      var attributes = data.AllowedInputVariables.Count();
    4545
    46       var ldaDs = AlglibUtil.PrepareInputMatrix(data.Dataset,
    47                                                 data.AllowedInputVariables.Concat(data.TargetVariable.ToEnumerable()),
    48                                                 data.TrainingIndices);
     46      var ldaDs = data.Dataset.ToArray(
     47                                       data.AllowedInputVariables.Concat(data.TargetVariable.ToEnumerable()),
     48                                       data.TrainingIndices);
    4949
    5050      // map class values to sequential natural numbers (required by alglib)
  • trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/Nca/Initialization/PcaInitializer.cs

    r14400 r14843  
    4444      var attributes = data.AllowedInputVariables.Count();
    4545
    46       var pcaDs = AlglibUtil.PrepareInputMatrix(data.Dataset, data.AllowedInputVariables, data.TrainingIndices);
     46      var pcaDs = data.Dataset.ToArray(data.AllowedInputVariables, data.TrainingIndices);
    4747
    4848      int info;
  • trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/Nca/NcaGradientCalculator.cs

    r14400 r14843  
    9999      }
    100100
    101       var data = AlglibUtil.PrepareInputMatrix(problemData.Dataset, problemData.AllowedInputVariables,
    102                                                problemData.TrainingIndices);
     101      var data = problemData.Dataset.ToArray(problemData.AllowedInputVariables,
     102                                             problemData.TrainingIndices);
    103103      var classes = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.TrainingIndices).ToArray();
    104104
  • trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/Nca/NcaModel.cs

    r14400 r14843  
    8686
    8787    public double[,] Reduce(IDataset dataset, IEnumerable<int> rows) {
    88       var data = AlglibUtil.PrepareInputMatrix(dataset, allowedInputVariables, rows);
     88      var data = dataset.ToArray(allowedInputVariables, rows);
    8989
    9090      var targets = dataset.GetDoubleValues(TargetVariable, rows).ToArray();
  • trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/NearestNeighbour/NearestNeighbourModel.cs

    r14826 r14843  
    119119      if (IsCompatibilityLoaded) {
    120120        // no scaling
    121         inputMatrix = AlglibUtil.PrepareInputMatrix(dataset,
     121        inputMatrix = dataset.ToArray(
    122122          this.allowedInputVariables.Concat(new string[] { targetVariable }),
    123123          rows);
     
    167167
    168168    private static double[,] CreateScaledData(IDataset dataset, IEnumerable<string> variables, IEnumerable<int> rows, double[] offsets, double[] factors) {
    169       var x = new double[rows.Count(), variables.Count()];
    170       var colIdx = 0;
    171       foreach (var variableName in variables) {
    172         var rowIdx = 0;
    173         foreach (var val in dataset.GetDoubleValues(variableName, rows)) {
    174           x[rowIdx, colIdx] = (val + offsets[colIdx]) * factors[colIdx];
    175           rowIdx++;
    176         }
    177         colIdx++;
    178       }
    179       return x;
     169      var transforms =
     170        variables.Select(
     171          (_, colIdx) =>
     172            new LinearTransformation(variables) { Addend = offsets[colIdx] * factors[colIdx], Multiplier = factors[colIdx] });
     173      return dataset.ToArray(variables, transforms, rows);
    180174    }
    181175
     
    187181      double[,] inputData;
    188182      if (IsCompatibilityLoaded) {
    189         inputData = AlglibUtil.PrepareInputMatrix(dataset, allowedInputVariables, rows);
     183        inputData = dataset.ToArray(allowedInputVariables, rows);
    190184      } else {
    191185        inputData = CreateScaledData(dataset, allowedInputVariables, rows, offsets, weights);
     
    223217      double[,] inputData;
    224218      if (IsCompatibilityLoaded) {
    225         inputData = AlglibUtil.PrepareInputMatrix(dataset, allowedInputVariables, rows);
     219        inputData = dataset.ToArray(allowedInputVariables, rows);
    226220      } else {
    227221        inputData = CreateScaledData(dataset, allowedInputVariables, rows, offsets, weights);
  • trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/NeuralNetwork/NeuralNetworkClassification.cs

    r14523 r14843  
    184184      IEnumerable<string> allowedInputVariables = problemData.AllowedInputVariables;
    185185      IEnumerable<int> rows = problemData.TrainingIndices;
    186       double[,] inputMatrix = AlglibUtil.PrepareInputMatrix(dataset, allowedInputVariables.Concat(new string[] { targetVariable }), rows);
     186      double[,] inputMatrix = dataset.ToArray(allowedInputVariables.Concat(new string[] { targetVariable }), rows);
    187187      if (inputMatrix.Cast<double>().Any(x => double.IsNaN(x) || double.IsInfinity(x)))
    188188        throw new NotSupportedException("Neural network classification does not support NaN or infinity values in the input dataset.");
  • trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/NeuralNetwork/NeuralNetworkEnsembleClassification.cs

    r14523 r14843  
    125125    public NeuralNetworkEnsembleClassification()
    126126      : base() {
    127       var validHiddenLayerValues = new ItemSet<IntValue>(new IntValue[] { 
    128         (IntValue)new IntValue(0).AsReadOnly(), 
    129         (IntValue)new IntValue(1).AsReadOnly(), 
     127      var validHiddenLayerValues = new ItemSet<IntValue>(new IntValue[] {
     128        (IntValue)new IntValue(0).AsReadOnly(),
     129        (IntValue)new IntValue(1).AsReadOnly(),
    130130        (IntValue)new IntValue(2).AsReadOnly() });
    131131      var selectedHiddenLayerValue = (from v in validHiddenLayerValues
     
    170170      IEnumerable<string> allowedInputVariables = problemData.AllowedInputVariables;
    171171      IEnumerable<int> rows = problemData.TrainingIndices;
    172       double[,] inputMatrix = AlglibUtil.PrepareInputMatrix(dataset, allowedInputVariables.Concat(new string[] { targetVariable }), rows);
     172      double[,] inputMatrix = dataset.ToArray(allowedInputVariables.Concat(new string[] { targetVariable }), rows);
    173173      if (inputMatrix.Cast<double>().Any(x => double.IsNaN(x) || double.IsInfinity(x)))
    174174        throw new NotSupportedException("Neural network ensemble classification does not support NaN or infinity values in the input dataset.");
  • trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/NeuralNetwork/NeuralNetworkEnsembleModel.cs

    r14400 r14843  
    9191
    9292    public IEnumerable<double> GetEstimatedValues(IDataset dataset, IEnumerable<int> rows) {
    93       double[,] inputData = AlglibUtil.PrepareInputMatrix(dataset, allowedInputVariables, rows);
     93      double[,] inputData = dataset.ToArray(allowedInputVariables, rows);
    9494
    9595      int n = inputData.GetLength(0);
     
    108108
    109109    public override IEnumerable<double> GetEstimatedClassValues(IDataset dataset, IEnumerable<int> rows) {
    110       double[,] inputData = AlglibUtil.PrepareInputMatrix(dataset, allowedInputVariables, rows);
     110      double[,] inputData = dataset.ToArray(allowedInputVariables, rows);
    111111
    112112      int n = inputData.GetLength(0);
  • trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/NeuralNetwork/NeuralNetworkEnsembleRegression.cs

    r14523 r14843  
    169169      IEnumerable<string> allowedInputVariables = problemData.AllowedInputVariables;
    170170      IEnumerable<int> rows = problemData.TrainingIndices;
    171       double[,] inputMatrix = AlglibUtil.PrepareInputMatrix(dataset, allowedInputVariables.Concat(new string[] { targetVariable }), rows);
     171      double[,] inputMatrix = dataset.ToArray(allowedInputVariables.Concat(new string[] { targetVariable }), rows);
    172172      if (inputMatrix.Cast<double>().Any(x => double.IsNaN(x) || double.IsInfinity(x)))
    173173        throw new NotSupportedException("Neural network ensemble regression does not support NaN or infinity values in the input dataset.");
  • trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/NeuralNetwork/NeuralNetworkModel.cs

    r14400 r14843  
    9595
    9696    public IEnumerable<double> GetEstimatedValues(IDataset dataset, IEnumerable<int> rows) {
    97       double[,] inputData = AlglibUtil.PrepareInputMatrix(dataset, allowedInputVariables, rows);
     97      double[,] inputData = dataset.ToArray(allowedInputVariables, rows);
    9898
    9999      int n = inputData.GetLength(0);
     
    112112
    113113    public override IEnumerable<double> GetEstimatedClassValues(IDataset dataset, IEnumerable<int> rows) {
    114       double[,] inputData = AlglibUtil.PrepareInputMatrix(dataset, allowedInputVariables, rows);
     114      double[,] inputData = dataset.ToArray( allowedInputVariables, rows);
    115115
    116116      int n = inputData.GetLength(0);
  • trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/NeuralNetwork/NeuralNetworkRegression.cs

    r14523 r14843  
    185185      IEnumerable<string> allowedInputVariables = problemData.AllowedInputVariables;
    186186      IEnumerable<int> rows = problemData.TrainingIndices;
    187       double[,] inputMatrix = AlglibUtil.PrepareInputMatrix(dataset, allowedInputVariables.Concat(new string[] { targetVariable }), rows);
     187      double[,] inputMatrix = dataset.ToArray(allowedInputVariables.Concat(new string[] { targetVariable }), rows);
    188188      if (inputMatrix.Cast<double>().Any(x => double.IsNaN(x) || double.IsInfinity(x)))
    189189        throw new NotSupportedException("Neural network regression does not support NaN or infinity values in the input dataset.");
  • trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/RandomForest/RandomForestModel.cs

    r14400 r14843  
    139139
    140140    public IEnumerable<double> GetEstimatedValues(IDataset dataset, IEnumerable<int> rows) {
    141       double[,] inputData = AlglibUtil.PrepareInputMatrix(dataset, AllowedInputVariables, rows);
     141      double[,] inputData = dataset.ToArray(AllowedInputVariables, rows);
    142142      AssertInputMatrix(inputData);
    143143
     
    157157
    158158    public IEnumerable<double> GetEstimatedVariances(IDataset dataset, IEnumerable<int> rows) {
    159       double[,] inputData = AlglibUtil.PrepareInputMatrix(dataset, AllowedInputVariables, rows);
     159      double[,] inputData = dataset.ToArray(AllowedInputVariables, rows);
    160160      AssertInputMatrix(inputData);
    161161
     
    175175
    176176    public override IEnumerable<double> GetEstimatedClassValues(IDataset dataset, IEnumerable<int> rows) {
    177       double[,] inputData = AlglibUtil.PrepareInputMatrix(dataset, AllowedInputVariables, rows);
     177      double[,] inputData = dataset.ToArray(AllowedInputVariables, rows);
    178178      AssertInputMatrix(inputData);
    179179
     
    294294      out double rmsError, out double outOfBagRmsError, out double avgRelError, out double outOfBagAvgRelError) {
    295295      var variables = problemData.AllowedInputVariables.Concat(new string[] { problemData.TargetVariable });
    296       double[,] inputMatrix = AlglibUtil.PrepareInputMatrix(problemData.Dataset, variables, trainingIndices);
     296      double[,] inputMatrix = problemData.Dataset.ToArray(variables, trainingIndices);
    297297
    298298      alglib.dfreport rep;
     
    316316
    317317      var variables = problemData.AllowedInputVariables.Concat(new string[] { problemData.TargetVariable });
    318       double[,] inputMatrix = AlglibUtil.PrepareInputMatrix(problemData.Dataset, variables, trainingIndices);
     318      double[,] inputMatrix = problemData.Dataset.ToArray(variables, trainingIndices);
    319319
    320320      var classValues = problemData.ClassValues.ToArray();
  • trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/TimeSeries/AutoregressiveModeling.cs

    r14523 r14843  
    115115      alglib.lrunpack(lm, out coefficients, out nFeatures);
    116116
    117 
    118       ISymbolicExpressionTree tree = new SymbolicExpressionTree(new ProgramRootSymbol().CreateTreeNode());
    119       ISymbolicExpressionTreeNode startNode = new StartSymbol().CreateTreeNode();
    120       tree.Root.AddSubtree(startNode);
    121       ISymbolicExpressionTreeNode addition = new Addition().CreateTreeNode();
    122       startNode.AddSubtree(addition);
    123 
    124       for (int i = 0; i < timeOffset; i++) {
    125         LaggedVariableTreeNode node = (LaggedVariableTreeNode)new LaggedVariable().CreateTreeNode();
    126         node.VariableName = targetVariable;
    127         node.Weight = coefficients[i];
    128         node.Lag = (i + 1) * -1;
    129         addition.AddSubtree(node);
    130       }
    131 
    132       ConstantTreeNode cNode = (ConstantTreeNode)new Constant().CreateTreeNode();
    133       cNode.Value = coefficients[coefficients.Length - 1];
    134       addition.AddSubtree(cNode);
     117      var tree = LinearModelToTreeConverter.CreateTree(
     118        variableNames: Enumerable.Repeat(problemData.TargetVariable, nFeatures).ToArray(),
     119        lags: Enumerable.Range(0, timeOffset).Select(i => (i + 1) * -1).ToArray(),
     120        coefficients: coefficients.Take(nFeatures).ToArray(),
     121        @const: coefficients[nFeatures]
     122        );
    135123
    136124      var interpreter = new SymbolicTimeSeriesPrognosisExpressionTreeInterpreter(problemData.TargetVariable);
  • trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/kMeans/KMeansClustering.cs

    r14523 r14843  
    9090      double[,] centers;
    9191      int[] xyc;
    92       double[,] inputMatrix = AlglibUtil.PrepareInputMatrix(dataset, allowedInputVariables, rows);
     92      double[,] inputMatrix = dataset.ToArray(allowedInputVariables, rows);
    9393      if (inputMatrix.Cast<double>().Any(x => double.IsNaN(x) || double.IsInfinity(x)))
    9494        throw new NotSupportedException("k-Means clustering does not support NaN or infinity values in the input dataset.");
Note: See TracChangeset for help on using the changeset viewer.