- Timestamp:
- 04/04/17 16:57:45 (8 years ago)
- Location:
- branches/symbreg-factors-2650
- Files:
-
- 4 edited
Legend:
- Unmodified
- Added
- Removed
-
branches/symbreg-factors-2650
- Property svn:mergeinfo changed
/trunk/sources merged: 14769-14770,14772-14775,14779-14781,14786,14789-14791,14793,14805,14809-14810,14817,14819-14820
- Property svn:mergeinfo changed
-
branches/symbreg-factors-2650/HeuristicLab.Algorithms.DataAnalysis
- Property svn:mergeinfo changed
/trunk/sources/HeuristicLab.Algorithms.DataAnalysis merged: 14779-14781
- Property svn:mergeinfo changed
-
branches/symbreg-factors-2650/HeuristicLab.Algorithms.DataAnalysis/3.4/CrossValidation.cs
r14185 r14825 451 451 var aggregatedResults = new List<IResult>(); 452 452 foreach (KeyValuePair<string, List<IClassificationSolution>> solutions in resultSolutions) { 453 // clone manually to correctly clone references between cloned root objects 454 Cloner cloner = new Cloner(); 455 var problemDataClone = (IClassificationProblemData)cloner.Clone(Problem.ProblemData); 453 // at least one algorithm (GBT with logistic regression loss) produces a classification solution even though the original problem is a regression problem. 454 var targetVariable = solutions.Value.First().ProblemData.TargetVariable; 455 var problemDataClone = new ClassificationProblemData(Problem.ProblemData.Dataset, 456 Problem.ProblemData.AllowedInputVariables, targetVariable); 456 457 // set partitions of problem data clone correctly 457 458 problemDataClone.TrainingPartition.Start = SamplesStart.Value; problemDataClone.TrainingPartition.End = SamplesEnd.Value; -
branches/symbreg-factors-2650/HeuristicLab.Algorithms.DataAnalysis/3.4/GradientBoostedTrees/GradientBoostedTreesAlgorithm.cs
r14542 r14825 255 255 var classificationProblemData = new ClassificationProblemData(problemData.Dataset, 256 256 problemData.AllowedInputVariables, problemData.TargetVariable, problemData.Transformations); 257 classificationModel.RecalculateModelParameters(classificationProblemData, classificationProblemData.TrainingIndices); 257 classificationProblemData.TrainingPartition.Start = Problem.ProblemData.TrainingPartition.Start; 258 classificationProblemData.TrainingPartition.End = Problem.ProblemData.TrainingPartition.End; 259 classificationProblemData.TestPartition.Start = Problem.ProblemData.TestPartition.Start; 260 classificationProblemData.TestPartition.End = Problem.ProblemData.TestPartition.End; 261 262 classificationModel.SetThresholdsAndClassValues(new double[] { double.NegativeInfinity, 0.0 }, new []{ 0.0, 1.0 }); 263 258 264 259 265 var classificationSolution = new DiscriminantFunctionClassificationSolution(classificationModel, classificationProblemData);
Note: See TracChangeset
for help on using the changeset viewer.