- Timestamp:
- 04/04/17 13:59:42 (8 years ago)
- Location:
- stable
- Files:
-
- 4 edited
Legend:
- Unmodified
- Added
- Removed
-
stable
- Property svn:mergeinfo changed
/trunk/sources merged: 14107,14230
- Property svn:mergeinfo changed
-
stable/HeuristicLab.Algorithms.DataAnalysis
- Property svn:mergeinfo changed
/trunk/sources/HeuristicLab.Algorithms.DataAnalysis merged: 14107,14230
- Property svn:mergeinfo changed
-
stable/HeuristicLab.Algorithms.DataAnalysis/3.4/RandomForest/RandomForestModel.cs
r14186 r14822 152 152 } 153 153 154 public IEnumerable<double> GetEstimatedVariances(IDataset dataset, IEnumerable<int> rows) { 155 double[,] inputData = AlglibUtil.PrepareInputMatrix(dataset, AllowedInputVariables, rows); 156 AssertInputMatrix(inputData); 157 158 int n = inputData.GetLength(0); 159 int columns = inputData.GetLength(1); 160 double[] x = new double[columns]; 161 double[] ys = new double[this.RandomForest.innerobj.ntrees]; 162 163 for (int row = 0; row < n; row++) { 164 for (int column = 0; column < columns; column++) { 165 x[column] = inputData[row, column]; 166 } 167 alglib.dforest.dfprocessraw(RandomForest.innerobj, x, ref ys); 168 yield return ys.VariancePop(); 169 } 170 } 171 154 172 public override IEnumerable<double> GetEstimatedClassValues(IDataset dataset, IEnumerable<int> rows) { 155 173 double[,] inputData = AlglibUtil.PrepareInputMatrix(dataset, AllowedInputVariables, rows); -
stable/HeuristicLab.Algorithms.DataAnalysis/3.4/RandomForest/RandomForestRegressionSolution.cs
r14186 r14822 31 31 [Item("RandomForestRegressionSolution", "Represents a random forest solution for a regression problem which can be visualized in the GUI.")] 32 32 [StorableClass] 33 public sealed class RandomForestRegressionSolution : RegressionSolution, IRandomForestRegressionSolution {33 public sealed class RandomForestRegressionSolution : ConfidenceRegressionSolution, IRandomForestRegressionSolution { 34 34 35 35 public new IRandomForestModel Model {
Note: See TracChangeset
for help on using the changeset viewer.