- Timestamp:
- 03/10/17 08:37:27 (8 years ago)
- Location:
- branches/TSNE/HeuristicLab.Algorithms.DataAnalysis/3.4/TSNE
- Files:
-
- 3 edited
Legend:
- Unmodified
- Added
- Removed
-
branches/TSNE/HeuristicLab.Algorithms.DataAnalysis/3.4/TSNE/SPtree.cs
r14518 r14742 157 157 // Ignore objects which do not belong in this quad tree 158 158 var point = new double[dimension]; 159 Buffer.BlockCopy(Data, (int)(sizeof(double) * dimension * newIndex), point, 0, (int)(sizeof(double) * dimension));159 Buffer.BlockCopy(Data, sizeof(double) * dimension * newIndex, point, 0, sizeof(double) * dimension); 160 160 if (!boundary.ContainsPoint(point)) return false; 161 161 cumulativeSize++; … … 227 227 public bool IsCorrect() { 228 228 var row = new double[dimension]; 229 for (var n = 0; n < size; n++) 230 Buffer.BlockCopy(Data, (int)(sizeof(double) * dimension * n), row, 0, (int)(sizeof(double) * dimension)); 229 for (var n = 0; n < size; n++) Buffer.BlockCopy(Data, sizeof(double) * dimension * n, row, 0, sizeof(double) * dimension); 231 230 if (!boundary.ContainsPoint(row)) return false; 232 231 if (isLeaf) return true; -
branches/TSNE/HeuristicLab.Algorithms.DataAnalysis/3.4/TSNE/TSNE.cs
r14558 r14742 132 132 this.results = results; 133 133 this.dataRowLookup = dataRowLookup; 134 if (dataRows != null) 135 this.dataRows = dataRows; 134 if (dataRows != null) this.dataRows = dataRows; 136 135 else { this.dataRows = new Dictionary<string, ScatterPlotDataRow>(); } 137 136 } … … 200 199 201 200 private void SetUpResults(IReadOnlyCollection<T> data) { 202 if (dataRowLookup == null) { 203 dataRowLookup = new Dictionary<string, List<int>>(); 204 dataRowLookup.Add("Data", Enumerable.Range(0, data.Count).ToList()); 205 } 201 if (dataRowLookup == null) dataRowLookup = new Dictionary<string, List<int>> { { "Data", Enumerable.Range(0, data.Count).ToList() } }; 206 202 if (results == null) return; 203 207 204 if (!results.ContainsKey(IterationResultName)) results.Add(new Result(IterationResultName, new IntValue(0))); 208 205 else ((IntValue)results[IterationResultName].Value).Value = 0; … … 216 213 var plot = results[ErrorPlotResultName].Value as DataTable; 217 214 if (plot == null) throw new ArgumentException("could not create/access Error-DataTable in Results-Collection"); 218 if (!plot.Rows.ContainsKey("errors")) { 219 plot.Rows.Add(new DataRow("errors")); 220 } 215 216 if (!plot.Rows.ContainsKey("errors")) plot.Rows.Add(new DataRow("errors")); 221 217 plot.Rows["errors"].Values.Clear(); 218 222 219 results.Add(new Result(ScatterPlotResultName, "Plot of the projected data", new ScatterPlot(DataResultName, ""))); 223 220 results.Add(new Result(DataResultName, "Projected Data", new DoubleMatrix())); … … 245 242 private void FillScatterPlot(double[,] lowDimData, ScatterPlot plot) { 246 243 foreach (var rowName in dataRowLookup.Keys) { 247 if (!plot.Rows.ContainsKey(rowName)) {244 if (!plot.Rows.ContainsKey(rowName)) 248 245 plot.Rows.Add(dataRows.ContainsKey(rowName) ? dataRows[rowName] : new ScatterPlotDataRow(rowName, "", new List<Point2D<double>>())); 249 }250 //else plot.Rows[rowName].Points.Clear();251 246 plot.Rows[rowName].Points.Replace(dataRowLookup[rowName].Select(i => new Point2D<double>(lowDimData[i, 0], lowDimData[i, 1]))); 252 //plot.Rows[rowName].Points.AddRange();253 247 } 254 248 } … … 503 497 tree.ComputeEdgeForces(rowP, colP, valP, n, posF); 504 498 var row = new double[d]; 505 for ( intn1 = 0; n1 < n; n1++) {499 for (var n1 = 0; n1 < n; n1++) { 506 500 Buffer.BlockCopy(negF, (sizeof(double) * n1 * d), row, 0, d); 507 501 tree.ComputeNonEdgeForces(n1, theta, row, sumQ); -
branches/TSNE/HeuristicLab.Algorithms.DataAnalysis/3.4/TSNE/TSNEAnalysis.cs
r14558 r14742 57 57 set { base.Problem = value; } 58 58 } 59 #region Resultnames60 private const string ScatterPlotResultName = "Scatterplot";61 private const string DataResultName = "Projected Data";62 #endregion63 59 64 60 #region Parameternames … … 238 234 239 235 protected override void Run(CancellationToken cancellationToken) { 240 var data = CalculateProjectedData(Problem.ProblemData);241 var lowDimData = new DoubleMatrix(data);242 }243 244 private double[,] CalculateProjectedData(IDataAnalysisProblemData problemData) {245 236 var dataRowNames = new Dictionary<string, List<int>>(); 246 237 var rows = new Dictionary<string, ScatterPlotDataRow>(); 247 238 var problemData = Problem.ProblemData; 239 240 //color datapoints acording to Classes-Variable (be it double or string) 248 241 if (problemData.Dataset.VariableNames.Contains(Classes)) { 249 242 if ((problemData.Dataset as Dataset).VariableHasType<string>(Classes)) { 250 243 var classes = problemData.Dataset.GetStringValues(Classes).ToArray(); 251 for ( inti = 0; i < classes.Length; i++) {244 for (var i = 0; i < classes.Length; i++) { 252 245 if (!dataRowNames.ContainsKey(classes[i])) dataRowNames.Add(classes[i], new List<int>()); 253 dataRowNames[classes[i]].Add(i); //always succeeds246 dataRowNames[classes[i]].Add(i); 254 247 } 255 248 } else if ((problemData.Dataset as Dataset).VariableHasType<double>(Classes)) { … … 257 250 var max = classValues.Max() + 0.1; 258 251 var min = classValues.Min() - 0.1; 259 varcontours = 8;252 const int contours = 8; 260 253 for (var i = 0; i < contours; i++) { 261 var name = GetContourName(i, min, max, contours);262 dataRowNames.Add( name, new List<int>());263 rows.Add( name, new ScatterPlotDataRow(name, "", new List<Point2D<double>>()));264 rows[ name].VisualProperties.Color = GetHeatMapColor(i, contours);265 rows[ name].VisualProperties.PointSize = i + 3;254 var contourname = GetContourName(i, min, max, contours); 255 dataRowNames.Add(contourname, new List<int>()); 256 rows.Add(contourname, new ScatterPlotDataRow(contourname, "", new List<Point2D<double>>())); 257 rows[contourname].VisualProperties.Color = GetHeatMapColor(i, contours); 258 rows[contourname].VisualProperties.PointSize = i + 3; 266 259 } 267 for ( inti = 0; i < classValues.Length; i++) {268 dataRowNames[GetContourName(classValues[i], min, max, contours)].Add(i); //always succeeds260 for (var i = 0; i < classValues.Length; i++) { 261 dataRowNames[GetContourName(classValues[i], min, max, contours)].Add(i); 269 262 } 270 271 263 } 272 273 264 } else { 274 265 dataRowNames.Add("Training", problemData.TrainingIndices.ToList()); … … 276 267 } 277 268 278 var random = SetSeedRandomly ? new MersenneTwister() : new MersenneTwister(Seed); 269 //Set up and run TSNE 270 if (SetSeedRandomly) SeedParameter.Value.Value = new System.Random().Next(); 271 var random = new MersenneTwister(Seed); 279 272 tsne = new TSNE<RealVector>(Distance, random, Results, MaxIterations, StopLyingIteration, MomentumSwitchIteration, InitialMomentum, FinalMomentum, Eta, dataRowNames, rows); 280 273 var dataset = problemData.Dataset; … … 282 275 var data = new RealVector[dataset.Rows]; 283 276 for (var row = 0; row < dataset.Rows; row++) data[row] = new RealVector(allowedInputVariables.Select(col => dataset.GetDoubleValue(col, row)).ToArray()); 284 285 if (Normalization) { 286 data = NormalizeData(data); 287 } 288 289 return tsne.Run(data, NewDimensions, Perplexity, Theta); 290 } 291 292 private RealVector[] NormalizeData(RealVector[] data) { 277 if (Normalization) data = NormalizeData(data); 278 tsne.Run(data, NewDimensions, Perplexity, Theta); 279 } 280 281 private static RealVector[] NormalizeData(IReadOnlyList<RealVector> data) { 293 282 var n = data[0].Length; 294 283 var mean = new double[n]; 295 284 var sd = new double[n]; 296 var nData = new RealVector[data. Length];285 var nData = new RealVector[data.Count]; 297 286 for (var i = 0; i < n; i++) { 298 287 var i1 = i; 299 sd[i] = Enumerable.Range(0, data. Length).Select(x => data[x][i1]).StandardDeviation();300 mean[i] = Enumerable.Range(0, data. Length).Select(x => data[x][i1]).Average();288 sd[i] = Enumerable.Range(0, data.Count).Select(x => data[x][i1]).StandardDeviation(); 289 mean[i] = Enumerable.Range(0, data.Count).Select(x => data[x][i1]).Average(); 301 290 } 302 for ( int i = 0; i < data.Length; i++) {291 for (var i = 0; i < data.Count; i++) { 303 292 nData[i] = new RealVector(n); 304 for (int j = 0; j < n; j++) { 305 nData[i][j] = (data[i][j] - mean[j]) / sd[j]; 306 } 293 for (var j = 0; j < n; j++) nData[i][j] = (data[i][j] - mean[j]) / sd[j]; 307 294 } 308 295 return nData; 309 310 311 } 312 296 } 313 297 private static Color GetHeatMapColor(int contourNr, int noContours) { 314 298 var q = (double)contourNr / noContours; // q in [0,1]
Note: See TracChangeset
for help on using the changeset viewer.