Changeset 14711 for branches/PersistenceOverhaul/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/SingleObjective/Evaluators
- Timestamp:
- 03/03/17 11:41:43 (8 years ago)
- Location:
- branches/PersistenceOverhaul/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/SingleObjective/Evaluators
- Files:
-
- 8 edited
Legend:
- Unmodified
- Added
- Removed
-
branches/PersistenceOverhaul/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/SingleObjective/Evaluators/SymbolicRegressionConstantOptimizationEvaluator.cs
r13368 r14711 33 33 namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression { 34 34 [Item("Constant Optimization Evaluator", "Calculates Pearson Rᅵ of a symbolic regression solution and optimizes the constant used.")] 35 [Storable Class("CECB2610-E33A-4E96-9EE4-D913383298D0")]35 [StorableType("CECB2610-E33A-4E96-9EE4-D913383298D0")] 36 36 public class SymbolicRegressionConstantOptimizationEvaluator : SymbolicRegressionSingleObjectiveEvaluator { 37 37 private const string ConstantOptimizationIterationsParameterName = "ConstantOptimizationIterations"; -
branches/PersistenceOverhaul/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/SingleObjective/Evaluators/SymbolicRegressionLogResidualEvaluator.cs
r13368 r14711 38 38 "This effects GP convergence because functional fragments which are necessary to explain small variations are also more likely" + 39 39 " to stay in the population. This is useful even when the actual objective function is mean of squared errors.")] 40 [Storable Class("E1BDAF3F-70F7-48F1-B3EC-9B20C4A64A0E")]40 [StorableType("E1BDAF3F-70F7-48F1-B3EC-9B20C4A64A0E")] 41 41 public class SymbolicRegressionLogResidualEvaluator : SymbolicRegressionSingleObjectiveEvaluator { 42 42 [StorableConstructor] -
branches/PersistenceOverhaul/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/SingleObjective/Evaluators/SymbolicRegressionMeanRelativeErrorEvaluator.cs
r13368 r14711 33 33 "The +1 is necessary to handle data with the value of 0.0 correctly. " + 34 34 "Notice: Linear scaling is ignored for this evaluator.")] 35 [Storable Class("C786AB98-ABF7-4753-8E66-B342476076EA")]35 [StorableType("C786AB98-ABF7-4753-8E66-B342476076EA")] 36 36 public class SymbolicRegressionMeanRelativeErrorEvaluator : SymbolicRegressionSingleObjectiveEvaluator { 37 37 public override bool Maximization { get { return false; } } -
branches/PersistenceOverhaul/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/SingleObjective/Evaluators/SymbolicRegressionSingleObjectiveEvaluator.cs
r13368 r14711 29 29 using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; 30 30 namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression { 31 [Storable Class("78935B8F-2DE5-4E40-830D-E6843CAFFC4A")]31 [StorableType("78935B8F-2DE5-4E40-830D-E6843CAFFC4A")] 32 32 public abstract class SymbolicRegressionSingleObjectiveEvaluator : SymbolicDataAnalysisSingleObjectiveEvaluator<IRegressionProblemData>, ISymbolicRegressionSingleObjectiveEvaluator { 33 33 [StorableConstructor] -
branches/PersistenceOverhaul/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/SingleObjective/Evaluators/SymbolicRegressionSingleObjectiveMaxAbsoluteErrorEvaluator.cs
r13368 r14711 29 29 namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression { 30 30 [Item("Maximum absolute error Evaluator", "Calculates the maximum squared error of a symbolic regression solution.")] 31 [Storable Class("1D6C4F52-B4A7-4050-A1C9-9B0222ED103A")]31 [StorableType("1D6C4F52-B4A7-4050-A1C9-9B0222ED103A")] 32 32 public class SymbolicRegressionSingleObjectiveMaxAbsoluteErrorEvaluator : SymbolicRegressionSingleObjectiveEvaluator { 33 33 public override bool Maximization { get { return false; } } -
branches/PersistenceOverhaul/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/SingleObjective/Evaluators/SymbolicRegressionSingleObjectiveMeanAbsoluteErrorEvaluator.cs
r13368 r14711 29 29 namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression { 30 30 [Item("Mean absolute error Evaluator", "Calculates the mean absolute error of a symbolic regression solution.")] 31 [Storable Class("F612CD5C-BCAA-44DF-BE0C-FBF31161F382")]31 [StorableType("F612CD5C-BCAA-44DF-BE0C-FBF31161F382")] 32 32 public class SymbolicRegressionSingleObjectiveMeanAbsoluteErrorEvaluator : SymbolicRegressionSingleObjectiveEvaluator { 33 33 public override bool Maximization { get { return false; } } -
branches/PersistenceOverhaul/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/SingleObjective/Evaluators/SymbolicRegressionSingleObjectiveMeanSquaredErrorEvaluator.cs
r13368 r14711 29 29 namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression { 30 30 [Item("Mean squared error Evaluator", "Calculates the mean squared error of a symbolic regression solution.")] 31 [Storable Class("3B51DFFF-D896-48BF-81EA-DFD073727B4E")]31 [StorableType("3B51DFFF-D896-48BF-81EA-DFD073727B4E")] 32 32 public class SymbolicRegressionSingleObjectiveMeanSquaredErrorEvaluator : SymbolicRegressionSingleObjectiveEvaluator { 33 33 public override bool Maximization { get { return false; } } -
branches/PersistenceOverhaul/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/SingleObjective/Evaluators/SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.cs
r13368 r14711 29 29 namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression { 30 30 [Item("Pearson R² Evaluator", "Calculates the square of the pearson correlation coefficient (also known as coefficient of determination) of a symbolic regression solution.")] 31 [Storable Class("D0FF085B-8944-4804-937D-EF0E02696F63")]31 [StorableType("D0FF085B-8944-4804-937D-EF0E02696F63")] 32 32 public class SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator : SymbolicRegressionSingleObjectiveEvaluator { 33 33 [StorableConstructor]
Note: See TracChangeset
for help on using the changeset viewer.