Changeset 14711 for branches/PersistenceOverhaul/HeuristicLab.Algorithms.DataAnalysis/3.4/GradientBoostedTrees
- Timestamp:
- 03/03/17 11:41:43 (8 years ago)
- Location:
- branches/PersistenceOverhaul/HeuristicLab.Algorithms.DataAnalysis/3.4/GradientBoostedTrees
- Files:
-
- 10 edited
Legend:
- Unmodified
- Added
- Removed
-
branches/PersistenceOverhaul/HeuristicLab.Algorithms.DataAnalysis/3.4/GradientBoostedTrees/GradientBoostedTreesAlgorithm.cs
r13368 r14711 36 36 namespace HeuristicLab.Algorithms.DataAnalysis { 37 37 [Item("Gradient Boosted Trees (GBT)", "Gradient boosted trees algorithm. Friedman, J. \"Greedy Function Approximation: A Gradient Boosting Machine\", IMS 1999 Reitz Lecture.")] 38 [Storable Class("DA2F5BB9-19F3-42E8-A5D2-1CAAE12D1B6C")]38 [StorableType("DA2F5BB9-19F3-42E8-A5D2-1CAAE12D1B6C")] 39 39 [Creatable(CreatableAttribute.Categories.DataAnalysisRegression, Priority = 125)] 40 40 public class GradientBoostedTreesAlgorithm : BasicAlgorithm { -
branches/PersistenceOverhaul/HeuristicLab.Algorithms.DataAnalysis/3.4/GradientBoostedTrees/GradientBoostedTreesModel.cs
r13368 r14711 30 30 31 31 namespace HeuristicLab.Algorithms.DataAnalysis { 32 [Storable Class("37C2B67D-B2A9-42CC-880B-AD5F61104FDD")]32 [StorableType("37C2B67D-B2A9-42CC-880B-AD5F61104FDD")] 33 33 [Item("Gradient boosted tree model", "")] 34 34 // this is essentially a collection of weighted regression models -
branches/PersistenceOverhaul/HeuristicLab.Algorithms.DataAnalysis/3.4/GradientBoostedTrees/GradientBoostedTreesModelSurrogate.cs
r13368 r14711 28 28 29 29 namespace HeuristicLab.Algorithms.DataAnalysis { 30 [Storable Class("ECCC9F9F-E3B5-4D16-AB7F-B1221A5F7033")]30 [StorableType("ECCC9F9F-E3B5-4D16-AB7F-B1221A5F7033")] 31 31 // this class is used as a surrogate for persistence of an actual GBT model 32 32 // since the actual GBT model would be very large when persisted we only store all necessary information to -
branches/PersistenceOverhaul/HeuristicLab.Algorithms.DataAnalysis/3.4/GradientBoostedTrees/GradientBoostedTreesSolution.cs
r13368 r14711 27 27 28 28 namespace HeuristicLab.Algorithms.DataAnalysis { 29 [Storable Class("B99E81E5-DC80-4552-8B40-0089662FFFEB")]29 [StorableType("B99E81E5-DC80-4552-8B40-0089662FFFEB")] 30 30 public sealed class GradientBoostedTreesSolution : RegressionSolution { 31 31 public new IGradientBoostedTreesModel Model { -
branches/PersistenceOverhaul/HeuristicLab.Algorithms.DataAnalysis/3.4/GradientBoostedTrees/LossFunctions/AbsoluteErrorLoss.cs
r13368 r14711 29 29 namespace HeuristicLab.Algorithms.DataAnalysis { 30 30 // loss function for the weighted absolute error 31 [Storable Class("CDF5C3F1-0577-48FD-BA73-050231ADB015")]31 [StorableType("CDF5C3F1-0577-48FD-BA73-050231ADB015")] 32 32 [Item("Absolute error loss", "")] 33 33 public sealed class AbsoluteErrorLoss : Item, ILossFunction { -
branches/PersistenceOverhaul/HeuristicLab.Algorithms.DataAnalysis/3.4/GradientBoostedTrees/LossFunctions/LogisticRegressionLoss.cs
r13368 r14711 31 31 namespace HeuristicLab.Algorithms.DataAnalysis { 32 32 // Greedy Function Approximation: A Gradient Boosting Machine (page 9) 33 [Storable Class("89E2D6B3-2BDE-4FF2-98B5-236F4C3B3F69")]33 [StorableType("89E2D6B3-2BDE-4FF2-98B5-236F4C3B3F69")] 34 34 [Item("Logistic regression loss", "")] 35 35 public sealed class LogisticRegressionLoss : Item, ILossFunction { -
branches/PersistenceOverhaul/HeuristicLab.Algorithms.DataAnalysis/3.4/GradientBoostedTrees/LossFunctions/QuantileRegressionLoss.cs
r13368 r14711 32 32 // loss function for quantile regression 33 33 // Generalized Boosted Models - A Guide To The gbm Package, Greg Ridgeway, August 2007, page 11 34 [Storable Class("1D8A2DAE-4A77-4A37-8C03-7980A26B5E8B")]34 [StorableType("1D8A2DAE-4A77-4A37-8C03-7980A26B5E8B")] 35 35 [Item("QuantileRegressionloss", "Loss function for quantile regression")] 36 36 public sealed class QuantileRegressionLoss : ParameterizedNamedItem, ILossFunction { -
branches/PersistenceOverhaul/HeuristicLab.Algorithms.DataAnalysis/3.4/GradientBoostedTrees/LossFunctions/RelativeErrorLoss.cs
r13368 r14711 31 31 namespace HeuristicLab.Algorithms.DataAnalysis { 32 32 // relative error loss is a special case of weighted absolute error loss with weights = (1/target) 33 [Storable Class("6C2C8370-D504-4CD0-8157-33024C0EC144")]33 [StorableType("6C2C8370-D504-4CD0-8157-33024C0EC144")] 34 34 [Item("Relative error loss", "")] 35 35 public sealed class RelativeErrorLoss : Item, ILossFunction { -
branches/PersistenceOverhaul/HeuristicLab.Algorithms.DataAnalysis/3.4/GradientBoostedTrees/LossFunctions/SquaredErrorLoss.cs
r13368 r14711 29 29 30 30 namespace HeuristicLab.Algorithms.DataAnalysis { 31 [Storable Class("780DF644-DAD4-4A05-8C8D-9807628C72CB")]31 [StorableType("780DF644-DAD4-4A05-8C8D-9807628C72CB")] 32 32 [Item("Squared error loss", "")] 33 33 public sealed class SquaredErrorLoss : Item, ILossFunction { -
branches/PersistenceOverhaul/HeuristicLab.Algorithms.DataAnalysis/3.4/GradientBoostedTrees/RegressionTreeModel.cs
r13368 r14711 32 32 33 33 namespace HeuristicLab.Algorithms.DataAnalysis { 34 [Storable Class("2B90568C-D6C1-48EE-86F4-62389FB60E0F")]34 [StorableType("2B90568C-D6C1-48EE-86F4-62389FB60E0F")] 35 35 [Item("RegressionTreeModel", "Represents a decision tree for regression.")] 36 36 public sealed class RegressionTreeModel : NamedItem, IRegressionModel {
Note: See TracChangeset
for help on using the changeset viewer.