Changeset 14680 for branches/MemPRAlgorithm
- Timestamp:
- 02/17/17 13:01:00 (8 years ago)
- Location:
- branches/MemPRAlgorithm
- Files:
-
- 1 added
- 10 edited
- 1 moved
Legend:
- Unmodified
- Added
- Removed
-
branches/MemPRAlgorithm/HeuristicLab.Algorithms.MemPR/3.3 ¶
- Property svn:ignore
-
TabularUnified
old new 9 9 GeneratedArtifacts 10 10 _Pvt_Extensions 11 *.DotSettings
-
- Property svn:ignore
-
TabularUnified branches/MemPRAlgorithm/HeuristicLab.Algorithms.MemPR/3.3/MemPRAlgorithm.cs ¶
r14573 r14680 248 248 Context.AddToPopulation(child); 249 249 Context.BestQuality = child.Fitness; 250 Analyze( token);250 Analyze(CancellationToken.None); 251 251 token.ThrowIfCancellationRequested(); 252 252 if (Terminate()) return; -
TabularUnified branches/MemPRAlgorithm/HeuristicLab.Algorithms.MemPR/3.3/MemPRContext.cs ¶
r14573 r14680 346 346 #region Breeding Performance 347 347 public void AddBreedingResult(ISingleObjectiveSolutionScope<TSolution> a, ISingleObjectiveSolutionScope<TSolution> b, double parentDist, ISingleObjectiveSolutionScope<TSolution> child) { 348 return; 348 349 if (IsBetter(a, b)) 349 350 breedingStat.Add(Tuple.Create(a.Fitness, b.Fitness, parentDist, child.Fitness)); … … 352 353 } 353 354 public void RelearnBreedingPerformanceModel() { 355 return; 354 356 breedingPerformanceModel = RunRegression(PrepareRegression(ToListRow(breedingStat)), breedingPerformanceModel).Model; 355 357 } 356 358 public bool BreedingSuited(ISingleObjectiveSolutionScope<TSolution> p1, ISingleObjectiveSolutionScope<TSolution> p2, double dist) { 359 return true; 357 360 if (breedingPerformanceModel == null) return true; 358 361 double minI1 = double.MaxValue, minI2 = double.MaxValue, maxI1 = double.MinValue, maxI2 = double.MinValue; … … 372 375 #region Relinking Performance 373 376 public void AddRelinkingResult(ISingleObjectiveSolutionScope<TSolution> a, ISingleObjectiveSolutionScope<TSolution> b, double parentDist, ISingleObjectiveSolutionScope<TSolution> child) { 377 return; 374 378 if (IsBetter(a, b)) 375 379 relinkingStat.Add(Tuple.Create(a.Fitness, b.Fitness, parentDist, Maximization ? child.Fitness - a.Fitness : a.Fitness - child.Fitness)); … … 378 382 } 379 383 public void RelearnRelinkingPerformanceModel() { 384 return; 380 385 relinkingPerformanceModel = RunRegression(PrepareRegression(ToListRow(relinkingStat)), relinkingPerformanceModel).Model; 381 386 } 382 387 public bool RelinkSuited(ISingleObjectiveSolutionScope<TSolution> p1, ISingleObjectiveSolutionScope<TSolution> p2, double dist) { 388 return true; 383 389 if (relinkingPerformanceModel == null) return true; 384 390 double minI1 = double.MaxValue, minI2 = double.MaxValue, maxI1 = double.MinValue, maxI2 = double.MinValue; … … 401 407 #region Delinking Performance 402 408 public void AddDelinkingResult(ISingleObjectiveSolutionScope<TSolution> a, ISingleObjectiveSolutionScope<TSolution> b, double parentDist, ISingleObjectiveSolutionScope<TSolution> child) { 409 return; 403 410 if (IsBetter(a, b)) 404 411 delinkingStat.Add(Tuple.Create(a.Fitness, b.Fitness, parentDist, Maximization ? child.Fitness - a.Fitness : a.Fitness - child.Fitness)); … … 407 414 } 408 415 public void RelearnDelinkingPerformanceModel() { 416 return; 409 417 delinkingPerformanceModel = RunRegression(PrepareRegression(ToListRow(delinkingStat)), delinkingPerformanceModel).Model; 410 418 } 411 419 public bool DelinkSuited(ISingleObjectiveSolutionScope<TSolution> p1, ISingleObjectiveSolutionScope<TSolution> p2, double dist) { 420 return true; 412 421 if (delinkingPerformanceModel == null) return true; 413 422 double minI1 = double.MaxValue, minI2 = double.MaxValue, maxI1 = double.MinValue, maxI2 = double.MinValue; … … 429 438 #region Sampling Performance 430 439 public void AddSamplingResult(ISingleObjectiveSolutionScope<TSolution> sample, double avgDist) { 440 return; 431 441 samplingStat.Add(Tuple.Create(avgDist, sample.Fitness)); 432 442 if (samplingStat.Count % 10 == 0) RelearnSamplingPerformanceModel(); 433 443 } 434 444 public void RelearnSamplingPerformanceModel() { 445 return; 435 446 samplingPerformanceModel = RunRegression(PrepareRegression(ToListRow(samplingStat)), samplingPerformanceModel).Model; 436 447 } 437 448 public bool SamplingSuited(double avgDist) { 449 return true; 438 450 if (samplingPerformanceModel == null) return true; 439 451 if (avgDist < samplingStat.Min(x => x.Item1) || avgDist > samplingStat.Max(x => x.Item1)) return true; … … 444 456 #region Hillclimbing Performance 445 457 public void AddHillclimbingResult(ISingleObjectiveSolutionScope<TSolution> input, ISingleObjectiveSolutionScope<TSolution> outcome) { 458 return; 446 459 hillclimbingStat.Add(Tuple.Create(input.Fitness, Maximization ? outcome.Fitness - input.Fitness : input.Fitness - outcome.Fitness)); 447 460 if (hillclimbingStat.Count % 10 == 0) RelearnHillclimbingPerformanceModel(); 448 461 } 449 462 public void RelearnHillclimbingPerformanceModel() { 463 return; 450 464 hillclimbingPerformanceModel = RunRegression(PrepareRegression(ToListRow(hillclimbingStat)), hillclimbingPerformanceModel).Model; 451 465 } 452 466 public bool HillclimbingSuited(double startingFitness) { 467 return true; 453 468 if (hillclimbingPerformanceModel == null) return true; 454 469 if (startingFitness < HillclimbingStat.Min(x => x.Item1) || startingFitness > HillclimbingStat.Max(x => x.Item1)) … … 460 475 #region Adaptivewalking Performance 461 476 public void AddAdaptivewalkingResult(ISingleObjectiveSolutionScope<TSolution> input, ISingleObjectiveSolutionScope<TSolution> outcome) { 477 return; 462 478 adaptivewalkingStat.Add(Tuple.Create(input.Fitness, Maximization ? outcome.Fitness - input.Fitness : input.Fitness - outcome.Fitness)); 463 479 if (adaptivewalkingStat.Count % 10 == 0) RelearnAdaptiveWalkPerformanceModel(); 464 480 } 465 481 public void RelearnAdaptiveWalkPerformanceModel() { 482 return; 466 483 adaptiveWalkPerformanceModel = RunRegression(PrepareRegression(ToListRow(adaptivewalkingStat)), adaptiveWalkPerformanceModel).Model; 467 484 } 468 485 public bool AdaptivewalkingSuited(double startingFitness) { 486 return true; 469 487 if (adaptiveWalkPerformanceModel == null) return true; 470 488 if (startingFitness < AdaptivewalkingStat.Min(x => x.Item1) || startingFitness > AdaptivewalkingStat.Max(x => x.Item1)) -
branches/MemPRAlgorithm/HeuristicLab.Data ¶
-
branches/MemPRAlgorithm/HeuristicLab.Data/3.3 ¶
- Property svn:mergeinfo changed
/trunk/sources/HeuristicLab.Data/3.3 (added) merged: 14597,14672
- Property svn:mergeinfo changed
-
TabularUnified branches/MemPRAlgorithm/HeuristicLab.Data/3.3/EnumValue.cs ¶
r14185 r14680 52 52 private EnumValue(EnumValue<T> original, Cloner cloner) 53 53 : base(original, cloner) { 54 this.value = original.value;55 this.readOnly = original.readOnly;56 54 } 57 55 … … 64 62 } 65 63 } 64 65 public static class EnumHelper { 66 public static T SetFlag<T>(this Enum value, T flag, bool set) { 67 var baseType = Enum.GetUnderlyingType(value.GetType()); 68 dynamic valueAsBase = Convert.ChangeType(value, baseType); 69 dynamic flagAsBase = Convert.ChangeType(flag, baseType); 70 if (set) 71 valueAsBase |= flagAsBase; 72 else 73 valueAsBase &= ~flagAsBase; 74 return (T)valueAsBase; 75 } 76 } 66 77 } -
TabularUnified branches/MemPRAlgorithm/HeuristicLab.Data/3.3/HeuristicLab.Data-3.3.csproj ¶
r13695 r14680 108 108 </PropertyGroup> 109 109 <ItemGroup> 110 <Reference Include="Microsoft.CSharp" /> 110 111 <Reference Include="System" /> 111 112 <Reference Include="System.Core"> -
TabularUnified branches/MemPRAlgorithm/HeuristicLab.Data/3.3/ValueTypeMatrix.cs ¶
r14185 r14680 201 201 } 202 202 203 public virtual IEnumerable<T> GetRow(int row) { 204 for (var col = 0; col < Columns; col++) { 205 yield return matrix[row, col]; 206 } 207 } 208 209 public virtual IEnumerable<T> GetColumn(int col) { 210 for (var row = 0; row < Rows; row++) { 211 yield return matrix[row, col]; 212 } 213 } 214 203 215 public override string ToString() { 204 216 if (matrix.Length == 0) return "[]"; -
TabularUnified branches/MemPRAlgorithm/HeuristicLab.Encodings.BinaryVectorEncoding/3.3/HeuristicLab.Encodings.BinaryVectorEncoding-3.3.csproj ¶
r14550 r14680 127 127 <Compile Include="Crossovers\NPointCrossover.cs" /> 128 128 <Compile Include="BinaryVector.cs" /> 129 <Compile Include=" HammingSimilarityCalculator.cs" />129 <Compile Include="SimilarityCalculators\HammingSimilarityCalculator.cs" /> 130 130 <Compile Include="Interfaces\IBinaryVectorMultiNeighborhoodShakingOperator.cs" /> 131 131 <Compile Include="Interfaces\IOneBitflipMoveOperator.cs" /> -
TabularUnified branches/MemPRAlgorithm/HeuristicLab.Optimization.Views/3.3/RunCollectionViews/RunCollectionRLDView.cs ¶
r14420 r14680 30 30 using HeuristicLab.Analysis; 31 31 using HeuristicLab.Collections; 32 using HeuristicLab.Common; 32 33 using HeuristicLab.Core.Views; 33 34 using HeuristicLab.Data; … … 334 335 // aggregating over multiple problem instances 335 336 var maxEfforts = new Dictionary<ProblemDescription, double>(); 337 var worstKnowns = new Dictionary<ProblemDescription, double>(); 336 338 double minEff = double.MaxValue, maxEff = double.MinValue; 337 339 foreach (var group in groupedRuns) { … … 343 345 var bestKnownTarget = problem.Value.Item1; 344 346 var max = problem.Key.IsMaximization(); 345 var worstTarget = (max ? (1 - targets.Max()) : (1 + targets.Max())) * bestKnownTarget; 346 var bestTarget = (max ? (1 - targets.Min()) : (1 + targets.Min())) * bestKnownTarget; 347 double worstTarget = 0, bestTarget = 0; 348 if (bestKnownTarget > 0) { 349 worstTarget = (max ? (1 - targets.Max()) : (1 + targets.Max())) * bestKnownTarget; 350 bestTarget = (max ? (1 - targets.Min()) : (1 + targets.Min())) * bestKnownTarget; 351 } else if (bestKnownTarget < 0) { 352 worstTarget = (max ? (1 + targets.Max()) : (1 - targets.Max())) * bestKnownTarget; 353 bestTarget = (max ? (1 + targets.Min()) : (1 - targets.Min())) * bestKnownTarget; 354 } else { 355 var initials = problem.Value.Item2.Select(x => ((IndexedDataTable<double>)x.Results[table]).Rows.First().Values.First().Item2); 356 var worstKnown = max ? initials.Min() : initials.Max(); 357 if (!worstKnown.IsAlmost(0)) { 358 worstTarget = targets.Max() * worstKnown; 359 bestTarget = targets.Min() * worstKnown; 360 worstKnowns[problem.Key] = worstKnown; 361 } 362 } 347 363 foreach (var run in problem.Value.Item2) { 348 364 var row = ((IndexedDataTable<double>)run.Results[table]).Rows.First().Values; … … 389 405 390 406 if (aggregateTargetsCheckBox.Checked) { 391 var length = CalculateHitsForAllTargets(hits, misses, resultsTable.Rows.First(), problem.Key, group.Key, problem.Value.Item1, maxEff);407 var length = CalculateHitsForAllTargets(hits, misses, resultsTable.Rows.First(), problem.Key, group.Key, problem.Value.Item1, worstKnowns.ContainsKey(problem.Key) ? worstKnowns[problem.Key] : 0, maxEff); 392 408 maxLength = Math.Max(length, maxLength); 393 409 } else { 394 CalculateHitsForEachTarget(hits, misses, resultsTable.Rows.First(), problem.Key, group.Key, problem.Value.Item1, maxEff);410 CalculateHitsForEachTarget(hits, misses, resultsTable.Rows.First(), problem.Key, group.Key, problem.Value.Item1, worstKnowns.ContainsKey(problem.Key) ? worstKnowns[problem.Key] : 0, maxEff); 395 411 } 396 412 noRuns++; … … 495 511 Dictionary<string, SortedList<double, int>> misses, 496 512 IndexedDataRow<double> row, ProblemDescription problem, 497 string group, double bestTarget, double maxEffort) { 498 foreach (var t in targets.Select(x => Tuple.Create((problem.IsMaximization() ? (1 - x) : (1 + x)) * bestTarget, x))) { 513 string group, double bestTarget, double worstKnown, double maxEffort) { 514 var max = problem.IsMaximization(); 515 var targetValues = targets.Select(t => { 516 double target = 0; 517 if (bestTarget > 0) { 518 target = (max ? (1 - t) : (1 + t)) * bestTarget; 519 } else if (bestTarget < 0) { 520 target = (max ? (1 + t) : (1 - t)) * bestTarget; 521 } else { 522 if (!worstKnown.IsAlmost(0)) 523 target = t * worstKnown; 524 } 525 return Tuple.Create(target, t); 526 }); 527 foreach (var t in targetValues) { 499 528 var l = t.Item1; 500 529 var key = group + "_" + (t.Item2 * 100) + "%_" + l; … … 515 544 } 516 545 if (!hit) { 517 var max = Math.Min(row.Values.Last().Item1, maxEffort);518 if (misses[key].ContainsKey(max ))519 misses[key][max ]++;520 else misses[key][max ] = 1;546 var maxEff = Math.Min(row.Values.Last().Item1, maxEffort); 547 if (misses[key].ContainsKey(maxEff)) 548 misses[key][maxEff]++; 549 else misses[key][maxEff] = 1; 521 550 } 522 551 } … … 526 555 Dictionary<string, SortedList<double, int>> misses, 527 556 IndexedDataRow<double> row, ProblemDescription problem, 528 string group, double bestTarget, double maxEffort) {557 string group, double bestTarget, double worstKnown, double maxEffort) { 529 558 var values = row.Values; 530 559 if (!hits.ContainsKey(group)) { … … 536 565 var j = 0; 537 566 while (i < targets.Length && j < values.Count) { 538 var target = (problem.IsMaximization() ? (1 - targets[i]) : (1 + targets[i])) * bestTarget; 567 var max = problem.IsMaximization(); 568 double target = 0; 569 if (bestTarget > 0) { 570 target = (max ? (1 - targets[i]) : (1 + targets[i])) * bestTarget; 571 } else if (bestTarget < 0) { 572 target = (max ? (1 + targets[i]) : (1 - targets[i])) * bestTarget; 573 } else { 574 if (!worstKnown.IsAlmost(0)) 575 target = targets[i] * worstKnown; 576 } 539 577 var current = values[j]; 540 578 if (current.Item1 > maxEffort) break;
Note: See TracChangeset
for help on using the changeset viewer.