Changeset 14442 for branches/HeuristicLab.VRPEnhancements/HeuristicLab.Problems.VehicleRouting/3.4/Encodings
- Timestamp:
- 12/02/16 14:03:55 (8 years ago)
- Location:
- branches/HeuristicLab.VRPEnhancements/HeuristicLab.Problems.VehicleRouting/3.4/Encodings/Potvin/Creators
- Files:
-
- 3 edited
Legend:
- Unmodified
- Added
- Removed
-
branches/HeuristicLab.VRPEnhancements/HeuristicLab.Problems.VehicleRouting/3.4/Encodings/Potvin/Creators/Cluster.cs
r14431 r14442 9 9 public class ClusterAlgorithm<C,CO> where C : Cluster<CO> where CO : ClusterElement { 10 10 11 public static List<C> KMeans(IRandom random, List<CO> clusterElements, int k, double changeThreshold , bool minimizeImpact) {11 public static List<C> KMeans(IRandom random, List<CO> clusterElements, int k, double changeThreshold) { 12 12 HashSet<int> initMeans = new HashSet<int>(); 13 13 int nextMean = -1; … … 32 32 33 33 do { 34 int changes = KMeansRun(clusters, clusterElements , minimizeImpact);34 int changes = KMeansRun(clusters, clusterElements); 35 35 changeRate = (double)changes / clusterElements.Count; 36 36 } while (changeRate > changeThreshold); … … 43 43 } 44 44 45 private static int KMeansRun(List<C> clusters, List<CO> clusterElements , bool minimizeImpact) {45 private static int KMeansRun(List<C> clusters, List<CO> clusterElements) { 46 46 int changes = 0; 47 47 … … 57 57 for (int i = 1; i < clusters.Count; i++) { 58 58 double impact = clusters[i].CalculateImpact(e); 59 if ( 60 // optimal impact: max variance decrease (biggest negative or smallest positive value) 61 (minimizeImpact && impact < optImpact) || 62 // optimal impact: min variance increase, if no increase possible: min decrease (smallest negative or positive value) 63 //(!minimizeImpact && ((optImpact > 0 && impact < optImpact) || (optImpact < 0 && impact > optImpact)))) { 64 (!minimizeImpact && impact > optImpact) 65 ) { 66 59 if (impact < optImpact) { 67 60 optImpact = impact; 68 61 optClusterIdx = i; … … 206 199 public override double CalculateDistance(TemporalDistanceClusterElement e1, TemporalDistanceClusterElement e2) { 207 200 double distance = 0.0; 208 distance += Math.Abs(e1.ReadyTime - e2.ReadyTime); 209 distance += Math.Abs(e1.DueTime - e2.DueTime); 210 211 return distance; 212 //return euklid(e1, e2); 213 } 214 215 private double euklid(TemporalDistanceClusterElement e1, TemporalDistanceClusterElement e2) { 216 double distance = 0.0; 217 distance += Math.Pow(e1.ReadyTime - e2.ReadyTime + e1.DueTime - e2.DueTime, 2); 201 202 distance += Math.Pow(e1.ReadyTime - e2.ReadyTime, 2); 203 distance += Math.Pow(e1.DueTime - e2.DueTime, 2); 218 204 219 205 return Math.Sqrt(distance); -
branches/HeuristicLab.VRPEnhancements/HeuristicLab.Problems.VehicleRouting/3.4/Encodings/Potvin/Creators/GeographicDistanceClusterCreator.cs
r14431 r14442 75 75 int k = random.Next(minK, maxK); 76 76 List<SpatialDistanceCluster> clusters = ClusterAlgorithm<SpatialDistanceCluster, SpatialDistanceClusterElement> 77 .KMeans(random, clusterElements, k, clusterChangeThreshold , true);77 .KMeans(random, clusterElements, k, clusterChangeThreshold); 78 78 79 79 // (3) build tours with a (a) shuffling (b) greedy tour creation routine -
branches/HeuristicLab.VRPEnhancements/HeuristicLab.Problems.VehicleRouting/3.4/Encodings/Potvin/Creators/TemporalDistanceClusterCreator.cs
r14431 r14442 76 76 int k = random.Next(minK, maxK); 77 77 List<TemporalDistanceCluster> clusters = ClusterAlgorithm<TemporalDistanceCluster, TemporalDistanceClusterElement> 78 .KMeans(random, clusterElements, k, clusterChangeThreshold , false);78 .KMeans(random, clusterElements, k, clusterChangeThreshold); 79 79 80 80 // (3) build tours with a (a) shuffling (b) greedy tour creation routine
Note: See TracChangeset
for help on using the changeset viewer.