Changeset 14393 for trunk/sources
- Timestamp:
- 11/15/16 21:23:43 (8 years ago)
- Location:
- trunk/sources
- Files:
-
- 1 deleted
- 28 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/GaussianProcess/GaussianProcessModel.cs
r14185 r14393 165 165 try { 166 166 CalculateModel(ds, rows, scaleInputs); 167 } 168 catch (alglib.alglibexception ae) { 167 } catch (alglib.alglibexception ae) { 169 168 // wrap exception so that calling code doesn't have to know about alglib implementation 170 169 throw new ArgumentException("There was a problem in the calculation of the Gaussian process model", ae); … … 260 259 private static double[,] GetData(IDataset ds, IEnumerable<string> allowedInputs, IEnumerable<int> rows, Scaling scaling) { 261 260 if (scaling != null) { 262 return AlglibUtil.PrepareAndScaleInputMatrix(ds, allowedInputs, rows, scaling); 261 // TODO: completely remove Scaling class 262 List<ITransformation<double>> transformations = new List<ITransformation<double>>(); 263 264 foreach (var varName in allowedInputs) { 265 double min; 266 double max; 267 scaling.GetScalingParameters(varName, out min, out max); 268 var add = -min / (max - min); 269 var mult = 1.0 / (max - min); 270 transformations.Add(new LinearTransformation(allowedInputs) { Addend = add, Multiplier = mult }); 271 } 272 return ds.ToArray(allowedInputs, transformations, rows); 263 273 } else { 264 return AlglibUtil.PrepareInputMatrix(ds,allowedInputs, rows);274 return ds.ToArray(allowedInputs, rows); 265 275 } 266 276 } … … 334 344 return Enumerable.Range(0, newN) 335 345 .Select(i => ms[i] + Util.ScalarProd(Ks[i], alpha)); 336 } 337 catch (alglib.alglibexception ae) { 346 } catch (alglib.alglibexception ae) { 338 347 // wrap exception so that calling code doesn't have to know about alglib implementation 339 348 throw new ArgumentException("There was a problem in the calculation of the Gaussian process model", ae); … … 381 390 } 382 391 return kss; 383 } 384 catch (alglib.alglibexception ae) { 392 } catch (alglib.alglibexception ae) { 385 393 // wrap exception so that calling code doesn't have to know about alglib implementation 386 394 throw new ArgumentException("There was a problem in the calculation of the Gaussian process model", ae); -
trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/HeuristicLab.Algorithms.DataAnalysis-3.4.csproj
r14024 r14393 244 244 <SubType>Code</SubType> 245 245 </Compile> 246 <Compile Include="Linear\AlglibUtil.cs" />247 <Compile Include="Linear\Scaling.cs" />248 246 <Compile Include="Linear\LinearDiscriminantAnalysis.cs" /> 249 247 <Compile Include="Linear\LinearRegression.cs"> … … 253 251 <Compile Include="Linear\MultinomialLogitClassificationSolution.cs" /> 254 252 <Compile Include="Linear\MultinomialLogitModel.cs" /> 253 <Compile Include="Linear\Scaling.cs" /> 255 254 <Compile Include="MctsSymbolicRegression\Automaton.cs" /> 256 255 <Compile Include="MctsSymbolicRegression\CodeGenerator.cs" /> -
trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/Linear/LinearDiscriminantAnalysis.cs
r14185 r14393 70 70 IEnumerable<int> rows = problemData.TrainingIndices; 71 71 int nClasses = problemData.ClassNames.Count(); 72 double[,] inputMatrix = AlglibUtil.PrepareInputMatrix(dataset,allowedInputVariables.Concat(new string[] { targetVariable }), rows);72 double[,] inputMatrix = dataset.ToArray(allowedInputVariables.Concat(new string[] { targetVariable }), rows); 73 73 if (inputMatrix.Cast<double>().Any(x => double.IsNaN(x) || double.IsInfinity(x))) 74 74 throw new NotSupportedException("Linear discriminant analysis does not support NaN or infinity values in the input dataset."); -
trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/Linear/LinearRegression.cs
r14390 r14393 73 73 IEnumerable<string> allowedInputVariables = problemData.AllowedInputVariables; 74 74 IEnumerable<int> rows = problemData.TrainingIndices; 75 double[,] inputMatrix = AlglibUtil.PrepareInputMatrix(dataset,allowedInputVariables.Concat(new string[] { targetVariable }), rows);75 double[,] inputMatrix = dataset.ToArray(allowedInputVariables.Concat(new string[] { targetVariable }), rows); 76 76 if (inputMatrix.Cast<double>().Any(x => double.IsNaN(x) || double.IsInfinity(x))) 77 77 throw new NotSupportedException("Linear regression does not support NaN or infinity values in the input dataset."); -
trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/Linear/MultinomialLogitClassification.cs
r14185 r14393 70 70 IEnumerable<string> allowedInputVariables = problemData.AllowedInputVariables; 71 71 IEnumerable<int> rows = problemData.TrainingIndices; 72 double[,] inputMatrix = AlglibUtil.PrepareInputMatrix(dataset,allowedInputVariables.Concat(new string[] { targetVariable }), rows);72 double[,] inputMatrix = dataset.ToArray(allowedInputVariables.Concat(new string[] { targetVariable }), rows); 73 73 if (inputMatrix.Cast<double>().Any(x => double.IsNaN(x) || double.IsInfinity(x))) 74 74 throw new NotSupportedException("Multinomial logit classification does not support NaN or infinity values in the input dataset."); -
trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/Linear/MultinomialLogitModel.cs
r14185 r14393 83 83 84 84 public override IEnumerable<double> GetEstimatedClassValues(IDataset dataset, IEnumerable<int> rows) { 85 double[,] inputData = AlglibUtil.PrepareInputMatrix(dataset,allowedInputVariables, rows);85 double[,] inputData = dataset.ToArray( allowedInputVariables, rows); 86 86 87 87 int n = inputData.GetLength(0); -
trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/Linear/Scaling.cs
r14185 r14393 29 29 30 30 namespace HeuristicLab.Algorithms.DataAnalysis { 31 [Obsolete("Use transformation classes in Problems.DataAnalysis instead")] 31 32 [StorableClass] 32 33 [Item(Name = "Scaling", Description = "Contains information about scaling of variables for data-analysis algorithms.")] -
trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/Nca/Initialization/LdaInitializer.cs
r14185 r14393 44 44 var attributes = data.AllowedInputVariables.Count(); 45 45 46 var ldaDs = AlglibUtil.PrepareInputMatrix(data.Dataset,47 48 46 var ldaDs = data.Dataset.ToArray( 47 data.AllowedInputVariables.Concat(data.TargetVariable.ToEnumerable()), 48 data.TrainingIndices); 49 49 50 50 // map class values to sequential natural numbers (required by alglib) -
trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/Nca/Initialization/PcaInitializer.cs
r14185 r14393 44 44 var attributes = data.AllowedInputVariables.Count(); 45 45 46 var pcaDs = AlglibUtil.PrepareInputMatrix(data.Dataset,data.AllowedInputVariables, data.TrainingIndices);46 var pcaDs = data.Dataset.ToArray(data.AllowedInputVariables, data.TrainingIndices); 47 47 48 48 int info; -
trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/Nca/NcaGradientCalculator.cs
r14185 r14393 99 99 } 100 100 101 var data = AlglibUtil.PrepareInputMatrix(problemData.Dataset,problemData.AllowedInputVariables,102 101 var data = problemData.Dataset.ToArray(problemData.AllowedInputVariables, 102 problemData.TrainingIndices); 103 103 var classes = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.TrainingIndices).ToArray(); 104 104 -
trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/Nca/NcaModel.cs
r14185 r14393 86 86 87 87 public double[,] Reduce(IDataset dataset, IEnumerable<int> rows) { 88 var data = AlglibUtil.PrepareInputMatrix(dataset,allowedInputVariables, rows);88 var data = dataset.ToArray(allowedInputVariables, rows); 89 89 90 90 var targets = dataset.GetDoubleValues(TargetVariable, rows).ToArray(); -
trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/NearestNeighbour/NearestNeighbourModel.cs
r14322 r14393 119 119 if (IsCompatibilityLoaded) { 120 120 // no scaling 121 inputMatrix = AlglibUtil.PrepareInputMatrix(dataset,121 inputMatrix = dataset.ToArray( 122 122 this.allowedInputVariables.Concat(new string[] { targetVariable }), 123 123 rows); … … 167 167 168 168 private static double[,] CreateScaledData(IDataset dataset, IEnumerable<string> variables, IEnumerable<int> rows, double[] offsets, double[] factors) { 169 var x = new double[rows.Count(), variables.Count()]; 170 var colIdx = 0; 171 foreach (var variableName in variables) { 172 var rowIdx = 0; 173 foreach (var val in dataset.GetDoubleValues(variableName, rows)) { 174 x[rowIdx, colIdx] = (val + offsets[colIdx]) * factors[colIdx]; 175 rowIdx++; 176 } 177 colIdx++; 178 } 179 return x; 169 var transforms = 170 variables.Select( 171 (_, colIdx) => 172 new LinearTransformation(variables) { Addend = offsets[colIdx] * factors[colIdx], Multiplier = factors[colIdx] }); 173 return dataset.ToArray(variables, transforms, rows); 180 174 } 181 175 … … 187 181 double[,] inputData; 188 182 if (IsCompatibilityLoaded) { 189 inputData = AlglibUtil.PrepareInputMatrix(dataset,allowedInputVariables, rows);183 inputData = dataset.ToArray(allowedInputVariables, rows); 190 184 } else { 191 185 inputData = CreateScaledData(dataset, allowedInputVariables, rows, offsets, weights); … … 223 217 double[,] inputData; 224 218 if (IsCompatibilityLoaded) { 225 inputData = AlglibUtil.PrepareInputMatrix(dataset,allowedInputVariables, rows);219 inputData = dataset.ToArray(allowedInputVariables, rows); 226 220 } else { 227 221 inputData = CreateScaledData(dataset, allowedInputVariables, rows, offsets, weights); -
trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/NeuralNetwork/NeuralNetworkClassification.cs
r14185 r14393 183 183 IEnumerable<string> allowedInputVariables = problemData.AllowedInputVariables; 184 184 IEnumerable<int> rows = problemData.TrainingIndices; 185 double[,] inputMatrix = AlglibUtil.PrepareInputMatrix(dataset,allowedInputVariables.Concat(new string[] { targetVariable }), rows);185 double[,] inputMatrix = dataset.ToArray(allowedInputVariables.Concat(new string[] { targetVariable }), rows); 186 186 if (inputMatrix.Cast<double>().Any(x => double.IsNaN(x) || double.IsInfinity(x))) 187 187 throw new NotSupportedException("Neural network classification does not support NaN or infinity values in the input dataset."); -
trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/NeuralNetwork/NeuralNetworkEnsembleClassification.cs
r14185 r14393 124 124 public NeuralNetworkEnsembleClassification() 125 125 : base() { 126 var validHiddenLayerValues = new ItemSet<IntValue>(new IntValue[] { 127 (IntValue)new IntValue(0).AsReadOnly(), 128 (IntValue)new IntValue(1).AsReadOnly(), 126 var validHiddenLayerValues = new ItemSet<IntValue>(new IntValue[] { 127 (IntValue)new IntValue(0).AsReadOnly(), 128 (IntValue)new IntValue(1).AsReadOnly(), 129 129 (IntValue)new IntValue(2).AsReadOnly() }); 130 130 var selectedHiddenLayerValue = (from v in validHiddenLayerValues … … 169 169 IEnumerable<string> allowedInputVariables = problemData.AllowedInputVariables; 170 170 IEnumerable<int> rows = problemData.TrainingIndices; 171 double[,] inputMatrix = AlglibUtil.PrepareInputMatrix(dataset,allowedInputVariables.Concat(new string[] { targetVariable }), rows);171 double[,] inputMatrix = dataset.ToArray(allowedInputVariables.Concat(new string[] { targetVariable }), rows); 172 172 if (inputMatrix.Cast<double>().Any(x => double.IsNaN(x) || double.IsInfinity(x))) 173 173 throw new NotSupportedException("Neural network ensemble classification does not support NaN or infinity values in the input dataset."); -
trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/NeuralNetwork/NeuralNetworkEnsembleModel.cs
r14185 r14393 91 91 92 92 public IEnumerable<double> GetEstimatedValues(IDataset dataset, IEnumerable<int> rows) { 93 double[,] inputData = AlglibUtil.PrepareInputMatrix(dataset,allowedInputVariables, rows);93 double[,] inputData = dataset.ToArray(allowedInputVariables, rows); 94 94 95 95 int n = inputData.GetLength(0); … … 108 108 109 109 public override IEnumerable<double> GetEstimatedClassValues(IDataset dataset, IEnumerable<int> rows) { 110 double[,] inputData = AlglibUtil.PrepareInputMatrix(dataset,allowedInputVariables, rows);110 double[,] inputData = dataset.ToArray(allowedInputVariables, rows); 111 111 112 112 int n = inputData.GetLength(0); -
trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/NeuralNetwork/NeuralNetworkEnsembleRegression.cs
r14185 r14393 168 168 IEnumerable<string> allowedInputVariables = problemData.AllowedInputVariables; 169 169 IEnumerable<int> rows = problemData.TrainingIndices; 170 double[,] inputMatrix = AlglibUtil.PrepareInputMatrix(dataset,allowedInputVariables.Concat(new string[] { targetVariable }), rows);170 double[,] inputMatrix = dataset.ToArray(allowedInputVariables.Concat(new string[] { targetVariable }), rows); 171 171 if (inputMatrix.Cast<double>().Any(x => double.IsNaN(x) || double.IsInfinity(x))) 172 172 throw new NotSupportedException("Neural network ensemble regression does not support NaN or infinity values in the input dataset."); -
trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/NeuralNetwork/NeuralNetworkModel.cs
r14185 r14393 95 95 96 96 public IEnumerable<double> GetEstimatedValues(IDataset dataset, IEnumerable<int> rows) { 97 double[,] inputData = AlglibUtil.PrepareInputMatrix(dataset,allowedInputVariables, rows);97 double[,] inputData = dataset.ToArray(allowedInputVariables, rows); 98 98 99 99 int n = inputData.GetLength(0); … … 112 112 113 113 public override IEnumerable<double> GetEstimatedClassValues(IDataset dataset, IEnumerable<int> rows) { 114 double[,] inputData = AlglibUtil.PrepareInputMatrix(dataset,allowedInputVariables, rows);114 double[,] inputData = dataset.ToArray( allowedInputVariables, rows); 115 115 116 116 int n = inputData.GetLength(0); -
trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/NeuralNetwork/NeuralNetworkRegression.cs
r14185 r14393 184 184 IEnumerable<string> allowedInputVariables = problemData.AllowedInputVariables; 185 185 IEnumerable<int> rows = problemData.TrainingIndices; 186 double[,] inputMatrix = AlglibUtil.PrepareInputMatrix(dataset,allowedInputVariables.Concat(new string[] { targetVariable }), rows);186 double[,] inputMatrix = dataset.ToArray(allowedInputVariables.Concat(new string[] { targetVariable }), rows); 187 187 if (inputMatrix.Cast<double>().Any(x => double.IsNaN(x) || double.IsInfinity(x))) 188 188 throw new NotSupportedException("Neural network regression does not support NaN or infinity values in the input dataset."); -
trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/RandomForest/RandomForestModel.cs
r14368 r14393 139 139 140 140 public IEnumerable<double> GetEstimatedValues(IDataset dataset, IEnumerable<int> rows) { 141 double[,] inputData = AlglibUtil.PrepareInputMatrix(dataset,AllowedInputVariables, rows);141 double[,] inputData = dataset.ToArray(AllowedInputVariables, rows); 142 142 AssertInputMatrix(inputData); 143 143 … … 157 157 158 158 public IEnumerable<double> GetEstimatedVariances(IDataset dataset, IEnumerable<int> rows) { 159 double[,] inputData = AlglibUtil.PrepareInputMatrix(dataset,AllowedInputVariables, rows);159 double[,] inputData = dataset.ToArray(AllowedInputVariables, rows); 160 160 AssertInputMatrix(inputData); 161 161 … … 175 175 176 176 public override IEnumerable<double> GetEstimatedClassValues(IDataset dataset, IEnumerable<int> rows) { 177 double[,] inputData = AlglibUtil.PrepareInputMatrix(dataset,AllowedInputVariables, rows);177 double[,] inputData = dataset.ToArray(AllowedInputVariables, rows); 178 178 AssertInputMatrix(inputData); 179 179 … … 294 294 out double rmsError, out double outOfBagRmsError, out double avgRelError, out double outOfBagAvgRelError) { 295 295 var variables = problemData.AllowedInputVariables.Concat(new string[] { problemData.TargetVariable }); 296 double[,] inputMatrix = AlglibUtil.PrepareInputMatrix(problemData.Dataset,variables, trainingIndices);296 double[,] inputMatrix = problemData.Dataset.ToArray(variables, trainingIndices); 297 297 298 298 alglib.dfreport rep; … … 316 316 317 317 var variables = problemData.AllowedInputVariables.Concat(new string[] { problemData.TargetVariable }); 318 double[,] inputMatrix = AlglibUtil.PrepareInputMatrix(problemData.Dataset,variables, trainingIndices);318 double[,] inputMatrix = problemData.Dataset.ToArray(variables, trainingIndices); 319 319 320 320 var classValues = problemData.ClassValues.ToArray(); -
trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/kMeans/KMeansClustering.cs
r14185 r14393 89 89 double[,] centers; 90 90 int[] xyc; 91 double[,] inputMatrix = AlglibUtil.PrepareInputMatrix(dataset,allowedInputVariables, rows);91 double[,] inputMatrix = dataset.ToArray(allowedInputVariables, rows); 92 92 if (inputMatrix.Cast<double>().Any(x => double.IsNaN(x) || double.IsInfinity(x))) 93 93 throw new NotSupportedException("k-Means clustering does not support NaN or infinity values in the input dataset."); -
trunk/sources/HeuristicLab.Common/3.3/EnumerableExtensions.cs
r13899 r14393 133 133 } 134 134 } 135 public static IEnumerable<T> TakeEvery<T>(this IEnumerable<T> xs, int nth) { 136 int i = 0; 137 foreach (var x in xs) { 138 if (i % nth == 0) yield return x; 139 i++; 140 } 141 } 135 142 136 143 /// <summary> -
trunk/sources/HeuristicLab.DataPreprocessing/3.4/PreprocessingTransformator.cs
r14185 r14393 113 113 // don't apply when the check fails 114 114 if (success) 115 return transformation. Apply(data);115 return transformation.ConfigureAndApply(data); 116 116 else 117 117 return data; -
trunk/sources/HeuristicLab.Problems.DataAnalysis/3.4/DatasetExtensions.cs
r14185 r14393 20 20 #endregion 21 21 22 using System; 22 23 using System.Collections.Generic; 24 using System.Linq; 23 25 24 26 namespace HeuristicLab.Problems.DataAnalysis { 25 27 public static class DatasetExtensions { 26 public static IEnumerable<T> TakeEvery<T>(this IEnumerable<T> xs, int nth) { 27 int i = 0; 28 foreach (var x in xs) { 29 if (i % nth == 0) yield return x; 30 i++; 28 public static double[,] ToArray(this IDataset dataset, IEnumerable<string> variables, IEnumerable<int> rows) { 29 return ToArray(dataset, 30 variables, 31 transformations: variables.Select(_ => (ITransformation<double>)null), // no transform 32 rows: rows); 33 } 34 public static double[,] ToArray(this IDataset dataset, IEnumerable<string> variables, IEnumerable<ITransformation<double>> transformations, IEnumerable<int> rows) { 35 string[] variablesArr = variables.ToArray(); 36 int[] rowsArr = rows.ToArray(); 37 ITransformation<double>[] transformArr = transformations.ToArray(); 38 if (transformArr.Length != variablesArr.Length) 39 throw new ArgumentException("Number of variables and number of transformations must match."); 40 41 double[,] matrix = new double[rowsArr.Length, variablesArr.Length]; 42 43 for (int i = 0; i < variablesArr.Length; i++) { 44 var origValues = dataset.GetDoubleValues(variablesArr[i], rowsArr); 45 var values = transformArr[i] != null ? transformArr[i].Apply(origValues) : origValues; 46 int row = 0; 47 foreach (var value in values) { 48 matrix[row, i] = value; 49 row++; 50 } 31 51 } 52 53 return matrix; 32 54 } 33 55 } -
trunk/sources/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/Transformations/LinearTransformation.cs
r14185 r14393 52 52 public double Multiplier { 53 53 get { return MultiplierParameter.Value.Value; } 54 protectedset {54 set { 55 55 MultiplierParameter.Value.Value = value; 56 56 } … … 59 59 public double Addend { 60 60 get { return AddendParameter.Value.Value; } 61 protectedset {61 set { 62 62 AddendParameter.Value.Value = value; 63 63 } -
trunk/sources/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/Transformations/ShiftStandardDistributionTransformation.cs
r12612 r14393 71 71 72 72 public override IEnumerable<double> Apply(IEnumerable<double> data) { 73 ConfigureParameters(data);74 73 if (OriginalStandardDeviation.IsAlmost(0.0)) { 75 74 return data; … … 94 93 } 95 94 96 p rotectedvoid ConfigureParameters(IEnumerable<double> data) {95 public override void ConfigureParameters(IEnumerable<double> data) { 97 96 OriginalStandardDeviation = data.StandardDeviation(); 98 97 OriginalMean = data.Average(); -
trunk/sources/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/Transformations/ShiftToRangeTransformation.cs
r12612 r14393 44 44 } 45 45 46 public override IEnumerable<double> Apply(IEnumerable<double> data) {47 ConfigureParameters(data);48 return base.Apply(data);49 }50 51 46 public override bool Check(IEnumerable<double> data, out string errorMsg) { 52 47 ConfigureParameters(data); … … 54 49 } 55 50 56 p rotectedvoid ConfigureParameters(IEnumerable<double> data) {51 public override void ConfigureParameters(IEnumerable<double> data) { 57 52 double originalRangeStart = data.Min(); 58 53 double originalRangeEnd = data.Max(); -
trunk/sources/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/Transformations/Transformation.cs
r14185 r14393 66 66 protected Transformation(IEnumerable<string> allowedColumns) : base(allowedColumns) { } 67 67 68 public virtual void ConfigureParameters(IEnumerable<T> data) { 69 // override in transformations with parameters 70 } 71 68 72 public abstract IEnumerable<T> Apply(IEnumerable<T> data); 73 public IEnumerable<T> ConfigureAndApply(IEnumerable<T> data) { 74 ConfigureParameters(data); 75 return Apply(data); 76 } 69 77 70 78 public abstract bool Check(IEnumerable<T> data, out string errorMsg); -
trunk/sources/HeuristicLab.Problems.DataAnalysis/3.4/Interfaces/ITransformation.cs
r14185 r14393 30 30 31 31 public interface ITransformation<T> : ITransformation { 32 void ConfigureParameters(IEnumerable<T> data); 33 IEnumerable<T> ConfigureAndApply(IEnumerable<T> data); 32 34 IEnumerable<T> Apply(IEnumerable<T> data); 33 35 }
Note: See TracChangeset
for help on using the changeset viewer.