Free cookie consent management tool by TermsFeed Policy Generator

Ignore:
Timestamp:
07/22/16 18:02:42 (8 years ago)
Author:
swagner
Message:

#2526: Updated year of copyrights in license headers

Location:
trunk/sources/HeuristicLab.Algorithms.EvolutionStrategy/3.3
Files:
4 edited

Legend:

Unmodified
Added
Removed
  • trunk/sources/HeuristicLab.Algorithms.EvolutionStrategy/3.3/EvolutionStrategyMainLoop.cs

    r12012 r14185  
    1 #region License Information
    2 /* HeuristicLab
    3  * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
    4  *
    5  * This file is part of HeuristicLab.
    6  *
    7  * HeuristicLab is free software: you can redistribute it and/or modify
    8  * it under the terms of the GNU General Public License as published by
    9  * the Free Software Foundation, either version 3 of the License, or
    10  * (at your option) any later version.
    11  *
    12  * HeuristicLab is distributed in the hope that it will be useful,
    13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
    14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    15  * GNU General Public License for more details.
    16  *
    17  * You should have received a copy of the GNU General Public License
    18  * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
    19  */
    20 #endregion
    21 
    22 using HeuristicLab.Common;
    23 using HeuristicLab.Core;
    24 using HeuristicLab.Data;
    25 using HeuristicLab.Operators;
    26 using HeuristicLab.Optimization.Operators;
    27 using HeuristicLab.Parameters;
    28 using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
    29 using HeuristicLab.Selection;
    30 
    31 namespace HeuristicLab.Algorithms.EvolutionStrategy {
    32   /// <summary>
    33   /// An operator which represents the main loop of an evolution strategy (EvolutionStrategy).
    34   /// </summary>
    35   [Item("EvolutionStrategyMainLoop", "An operator which represents the main loop of an evolution strategy (EvolutionStrategy).")]
    36   [StorableClass]
    37   public sealed class EvolutionStrategyMainLoop : AlgorithmOperator {
    38     #region Parameter properties
    39     public ValueLookupParameter<IRandom> RandomParameter {
    40       get { return (ValueLookupParameter<IRandom>)Parameters["Random"]; }
    41     }
    42     public ValueLookupParameter<BoolValue> MaximizationParameter {
    43       get { return (ValueLookupParameter<BoolValue>)Parameters["Maximization"]; }
    44     }
    45     public ScopeTreeLookupParameter<DoubleValue> QualityParameter {
    46       get { return (ScopeTreeLookupParameter<DoubleValue>)Parameters["Quality"]; }
    47     }
    48     public ValueLookupParameter<DoubleValue> BestKnownQualityParameter {
    49       get { return (ValueLookupParameter<DoubleValue>)Parameters["BestKnownQuality"]; }
    50     }
    51     public ValueLookupParameter<IntValue> PopulationSizeParameter {
    52       get { return (ValueLookupParameter<IntValue>)Parameters["PopulationSize"]; }
    53     }
    54     public ValueLookupParameter<IntValue> ParentsPerChildParameter {
    55       get { return (ValueLookupParameter<IntValue>)Parameters["ParentsPerChild"]; }
    56     }
    57     public ValueLookupParameter<IntValue> ChildrenParameter {
    58       get { return (ValueLookupParameter<IntValue>)Parameters["Children"]; }
    59     }
    60     public ValueLookupParameter<BoolValue> PlusSelectionParameter {
    61       get { return (ValueLookupParameter<BoolValue>)Parameters["PlusSelection"]; }
    62     }
    63     public IValueLookupParameter<BoolValue> ReevaluateElitesParameter {
    64       get { return (IValueLookupParameter<BoolValue>)Parameters["ReevaluateElites"]; }
    65     }
    66     public ValueLookupParameter<IntValue> MaximumGenerationsParameter {
    67       get { return (ValueLookupParameter<IntValue>)Parameters["MaximumGenerations"]; }
    68     }
    69     public ValueLookupParameter<IOperator> MutatorParameter {
    70       get { return (ValueLookupParameter<IOperator>)Parameters["Mutator"]; }
    71     }
    72     public ValueLookupParameter<IOperator> RecombinatorParameter {
    73       get { return (ValueLookupParameter<IOperator>)Parameters["Recombinator"]; }
    74     }
    75     public ValueLookupParameter<IOperator> EvaluatorParameter {
    76       get { return (ValueLookupParameter<IOperator>)Parameters["Evaluator"]; }
    77     }
    78     public ValueLookupParameter<VariableCollection> ResultsParameter {
    79       get { return (ValueLookupParameter<VariableCollection>)Parameters["Results"]; }
    80     }
    81     public ValueLookupParameter<IOperator> AnalyzerParameter {
    82       get { return (ValueLookupParameter<IOperator>)Parameters["Analyzer"]; }
    83     }
    84     public LookupParameter<IntValue> EvaluatedSolutionsParameter {
    85       get { return (LookupParameter<IntValue>)Parameters["EvaluatedSolutions"]; }
    86     }
    87     private ScopeParameter CurrentScopeParameter {
    88       get { return (ScopeParameter)Parameters["CurrentScope"]; }
    89     }
    90     private ValueLookupParameter<IOperator> StrategyParameterManipulatorParameter {
    91       get { return (ValueLookupParameter<IOperator>)Parameters["StrategyParameterManipulator"]; }
    92     }
    93     private ValueLookupParameter<IOperator> StrategyParameterCrossoverParameter {
    94       get { return (ValueLookupParameter<IOperator>)Parameters["StrategyParameterCrossover"]; }
    95     }
    96 
    97     public IScope CurrentScope {
    98       get { return CurrentScopeParameter.ActualValue; }
    99     }
    100     #endregion
    101 
    102     [StorableConstructor]
    103     private EvolutionStrategyMainLoop(bool deserializing) : base(deserializing) { }
    104     private EvolutionStrategyMainLoop(EvolutionStrategyMainLoop original, Cloner cloner)
    105       : base(original, cloner) {
    106     }
    107     public override IDeepCloneable Clone(Cloner cloner) {
    108       return new EvolutionStrategyMainLoop(this, cloner);
    109     }
    110     public EvolutionStrategyMainLoop()
    111       : base() {
    112       Initialize();
    113     }
    114 
    115     [StorableHook(HookType.AfterDeserialization)]
    116     private void AfterDeserialization() {
    117       // BackwardsCompatibility3.3
    118       #region Backwards compatible code, remove with 3.4
    119       if (!Parameters.ContainsKey("ReevaluateElites")) {
    120         Parameters.Add(new ValueLookupParameter<BoolValue>("ReevaluateElites", "Flag to determine if elite individuals should be reevaluated (i.e., if stochastic fitness functions are used.)"));
    121       }
    122       #endregion
    123     }
    124 
    125     private void Initialize() {
    126       #region Create parameters
    127       Parameters.Add(new ValueLookupParameter<IRandom>("Random", "A pseudo random number generator."));
    128       Parameters.Add(new ValueLookupParameter<BoolValue>("Maximization", "True if the problem is a maximization problem, otherwise false."));
    129       Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>("Quality", "The value which represents the quality of a solution."));
    130       Parameters.Add(new ValueLookupParameter<DoubleValue>("BestKnownQuality", "The best known quality value found so far."));
    131       Parameters.Add(new ValueLookupParameter<IntValue>("PopulationSize", "µ (mu) - the size of the population."));
    132       Parameters.Add(new ValueLookupParameter<IntValue>("ParentsPerChild", "ρ (rho) - how many parents should be recombined."));
    133       Parameters.Add(new ValueLookupParameter<IntValue>("Children", "λ (lambda) - the size of the offspring population."));
    134       Parameters.Add(new ValueLookupParameter<IntValue>("MaximumGenerations", "The maximum number of generations which should be processed."));
    135       Parameters.Add(new ValueLookupParameter<BoolValue>("PlusSelection", "True for plus selection (elitist population), false for comma selection (non-elitist population)."));
    136       Parameters.Add(new ValueLookupParameter<BoolValue>("ReevaluateElites", "Flag to determine if elite individuals should be reevaluated (i.e., if stochastic fitness functions are used.)"));
    137       Parameters.Add(new ValueLookupParameter<IOperator>("Mutator", "The operator used to mutate solutions."));
    138       Parameters.Add(new ValueLookupParameter<IOperator>("Recombinator", "The operator used to cross solutions."));
    139       Parameters.Add(new ValueLookupParameter<IOperator>("Evaluator", "The operator used to evaluate solutions. This operator is executed in parallel, if an engine is used which supports parallelization."));
    140       Parameters.Add(new ValueLookupParameter<VariableCollection>("Results", "The variable collection where results should be stored."));
    141       Parameters.Add(new ValueLookupParameter<IOperator>("Analyzer", "The operator used to analyze each generation."));
    142       Parameters.Add(new LookupParameter<IntValue>("EvaluatedSolutions", "The number of times solutions have been evaluated."));
    143       Parameters.Add(new ScopeParameter("CurrentScope", "The current scope which represents a population of solutions on which the EvolutionStrategy should be applied."));
    144       Parameters.Add(new ValueLookupParameter<IOperator>("StrategyParameterManipulator", "The operator to mutate the endogeneous strategy parameters."));
    145       Parameters.Add(new ValueLookupParameter<IOperator>("StrategyParameterCrossover", "The operator to cross the endogeneous strategy parameters."));
    146       #endregion
    147 
    148       #region Create operators
    149       VariableCreator variableCreator = new VariableCreator();
    150       ResultsCollector resultsCollector1 = new ResultsCollector();
    151       Placeholder analyzer1 = new Placeholder();
    152       WithoutRepeatingBatchedRandomSelector selector = new WithoutRepeatingBatchedRandomSelector();
    153       SubScopesProcessor subScopesProcessor1 = new SubScopesProcessor();
    154       Comparator useRecombinationComparator = new Comparator();
    155       ConditionalBranch useRecombinationBranch = new ConditionalBranch();
    156       ChildrenCreator childrenCreator = new ChildrenCreator();
    157       UniformSubScopesProcessor uniformSubScopesProcessor1 = new UniformSubScopesProcessor();
    158       Placeholder recombinator = new Placeholder();
    159       Placeholder strategyRecombinator = new Placeholder();
    160       Placeholder strategyMutator1 = new Placeholder();
    161       Placeholder mutator1 = new Placeholder();
    162       SubScopesRemover subScopesRemover = new SubScopesRemover();
    163       UniformSubScopesProcessor uniformSubScopesProcessor2 = new UniformSubScopesProcessor();
    164       Placeholder strategyMutator2 = new Placeholder();
    165       Placeholder mutator2 = new Placeholder();
    166       UniformSubScopesProcessor uniformSubScopesProcessor3 = new UniformSubScopesProcessor();
    167       Placeholder evaluator = new Placeholder();
    168       SubScopesCounter subScopesCounter = new SubScopesCounter();
    169       ConditionalBranch plusOrCommaReplacementBranch = new ConditionalBranch();
    170       MergingReducer plusReplacement = new MergingReducer();
    171       RightReducer commaReplacement = new RightReducer();
    172       BestSelector bestSelector = new BestSelector();
    173       RightReducer rightReducer = new RightReducer();
    174       IntCounter intCounter = new IntCounter();
    175       Comparator comparator = new Comparator();
    176       Placeholder analyzer2 = new Placeholder();
    177       ConditionalBranch conditionalBranch = new ConditionalBranch();
    178       ConditionalBranch reevaluateElitesBranch = new ConditionalBranch();
    179       SubScopesProcessor subScopesProcessor2 = new SubScopesProcessor();
    180       UniformSubScopesProcessor uniformSubScopesProcessor4 = new UniformSubScopesProcessor();
    181       Placeholder evaluator2 = new Placeholder();
    182       SubScopesCounter subScopesCounter2 = new SubScopesCounter();
    183 
    184 
    185       variableCreator.CollectedValues.Add(new ValueParameter<IntValue>("Generations", new IntValue(0))); // Class EvolutionStrategy expects this to be called Generations
    186 
    187       resultsCollector1.CollectedValues.Add(new LookupParameter<IntValue>("Generations"));
    188       resultsCollector1.ResultsParameter.ActualName = "Results";
    189 
    190       analyzer1.Name = "Analyzer (placeholder)";
    191       analyzer1.OperatorParameter.ActualName = AnalyzerParameter.Name;
    192 
    193       selector.Name = "ES Random Selector";
    194       selector.RandomParameter.ActualName = RandomParameter.Name;
    195       selector.ParentsPerChildParameter.ActualName = ParentsPerChildParameter.Name;
    196       selector.ChildrenParameter.ActualName = ChildrenParameter.Name;
    197 
    198       useRecombinationComparator.Name = "ParentsPerChild > 1";
    199       useRecombinationComparator.LeftSideParameter.ActualName = ParentsPerChildParameter.Name;
    200       useRecombinationComparator.RightSideParameter.Value = new IntValue(1);
    201       useRecombinationComparator.Comparison = new Comparison(ComparisonType.Greater);
    202       useRecombinationComparator.ResultParameter.ActualName = "UseRecombination";
    203 
    204       useRecombinationBranch.Name = "Use Recombination?";
    205       useRecombinationBranch.ConditionParameter.ActualName = "UseRecombination";
    206 
    207       childrenCreator.ParentsPerChild = null;
    208       childrenCreator.ParentsPerChildParameter.ActualName = ParentsPerChildParameter.Name;
    209 
    210       recombinator.Name = "Recombinator (placeholder)";
    211       recombinator.OperatorParameter.ActualName = RecombinatorParameter.Name;
    212 
    213       strategyRecombinator.Name = "Strategy Parameter Recombinator (placeholder)";
    214       strategyRecombinator.OperatorParameter.ActualName = StrategyParameterCrossoverParameter.Name;
    215 
    216       strategyMutator1.Name = "Strategy Parameter Manipulator (placeholder)";
    217       strategyMutator1.OperatorParameter.ActualName = StrategyParameterManipulatorParameter.Name;
    218 
    219       mutator1.Name = "Mutator (placeholder)";
    220       mutator1.OperatorParameter.ActualName = MutatorParameter.Name;
    221 
    222       subScopesRemover.RemoveAllSubScopes = true;
    223 
    224       strategyMutator2.Name = "Strategy Parameter Manipulator (placeholder)";
    225       strategyMutator2.OperatorParameter.ActualName = StrategyParameterManipulatorParameter.Name;
    226 
    227       mutator2.Name = "Mutator (placeholder)";
    228       mutator2.OperatorParameter.ActualName = MutatorParameter.Name;
    229 
    230       uniformSubScopesProcessor3.Parallel.Value = true;
    231 
    232       evaluator.Name = "Evaluator (placeholder)";
    233       evaluator.OperatorParameter.ActualName = EvaluatorParameter.Name;
    234 
    235       subScopesCounter.Name = "Increment EvaluatedSolutions";
    236       subScopesCounter.ValueParameter.ActualName = EvaluatedSolutionsParameter.Name;
    237 
    238       plusOrCommaReplacementBranch.ConditionParameter.ActualName = PlusSelectionParameter.Name;
    239 
    240       bestSelector.CopySelected = new BoolValue(false);
    241       bestSelector.MaximizationParameter.ActualName = MaximizationParameter.Name;
    242       bestSelector.NumberOfSelectedSubScopesParameter.ActualName = PopulationSizeParameter.Name;
    243       bestSelector.QualityParameter.ActualName = QualityParameter.Name;
    244 
    245       intCounter.Increment = new IntValue(1);
    246       intCounter.ValueParameter.ActualName = "Generations";
    247 
    248       comparator.Comparison = new Comparison(ComparisonType.GreaterOrEqual);
    249       comparator.LeftSideParameter.ActualName = "Generations";
    250       comparator.ResultParameter.ActualName = "Terminate";
    251       comparator.RightSideParameter.ActualName = MaximumGenerationsParameter.Name;
    252 
    253       analyzer2.Name = "Analyzer (placeholder)";
    254       analyzer2.OperatorParameter.ActualName = AnalyzerParameter.Name;
    255 
    256       conditionalBranch.ConditionParameter.ActualName = "Terminate";
    257 
    258       reevaluateElitesBranch.ConditionParameter.ActualName = "ReevaluateElites";
    259       reevaluateElitesBranch.Name = "Reevaluate elites ?";
    260 
    261       uniformSubScopesProcessor4.Parallel.Value = true;
    262 
    263       evaluator2.Name = "Evaluator (placeholder)";
    264       evaluator2.OperatorParameter.ActualName = EvaluatorParameter.Name;
    265 
    266       subScopesCounter2.Name = "Increment EvaluatedSolutions";
    267       subScopesCounter2.ValueParameter.ActualName = EvaluatedSolutionsParameter.Name;
    268       #endregion
    269 
    270       #region Create operator graph
    271       OperatorGraph.InitialOperator = variableCreator;
    272       variableCreator.Successor = resultsCollector1;
    273       resultsCollector1.Successor = analyzer1;
    274       analyzer1.Successor = selector;
    275       selector.Successor = subScopesProcessor1;
    276       subScopesProcessor1.Operators.Add(new EmptyOperator());
    277       subScopesProcessor1.Operators.Add(useRecombinationComparator);
    278       subScopesProcessor1.Successor = plusOrCommaReplacementBranch;
    279       useRecombinationComparator.Successor = useRecombinationBranch;
    280       useRecombinationBranch.TrueBranch = childrenCreator;
    281       useRecombinationBranch.FalseBranch = uniformSubScopesProcessor2;
    282       useRecombinationBranch.Successor = uniformSubScopesProcessor3;
    283       childrenCreator.Successor = uniformSubScopesProcessor1;
    284       uniformSubScopesProcessor1.Operator = recombinator;
    285       uniformSubScopesProcessor1.Successor = null;
    286       recombinator.Successor = strategyRecombinator;
    287       strategyRecombinator.Successor = strategyMutator1;
    288       strategyMutator1.Successor = mutator1;
    289       mutator1.Successor = subScopesRemover;
    290       subScopesRemover.Successor = null;
    291       uniformSubScopesProcessor2.Operator = strategyMutator2;
    292       uniformSubScopesProcessor2.Successor = null;
    293       strategyMutator2.Successor = mutator2;
    294       mutator2.Successor = null;
    295       uniformSubScopesProcessor3.Operator = evaluator;
    296       uniformSubScopesProcessor3.Successor = subScopesCounter;
    297       evaluator.Successor = null;
    298       subScopesCounter.Successor = null;
    299 
    300       plusOrCommaReplacementBranch.TrueBranch = reevaluateElitesBranch;
    301       reevaluateElitesBranch.TrueBranch = subScopesProcessor2;
    302       reevaluateElitesBranch.FalseBranch = null;
    303       subScopesProcessor2.Operators.Add(uniformSubScopesProcessor4);
    304       subScopesProcessor2.Operators.Add(new EmptyOperator());
    305       uniformSubScopesProcessor4.Operator = evaluator2;
    306       uniformSubScopesProcessor4.Successor = subScopesCounter2;
    307       subScopesCounter2.Successor = null;
    308       reevaluateElitesBranch.Successor = plusReplacement;
    309 
    310       plusOrCommaReplacementBranch.FalseBranch = commaReplacement;
    311       plusOrCommaReplacementBranch.Successor = bestSelector;
    312       bestSelector.Successor = rightReducer;
    313       rightReducer.Successor = intCounter;
    314       intCounter.Successor = comparator;
    315       comparator.Successor = analyzer2;
    316       analyzer2.Successor = conditionalBranch;
    317       conditionalBranch.FalseBranch = selector;
    318       conditionalBranch.TrueBranch = null;
    319       conditionalBranch.Successor = null;
    320       #endregion
    321     }
    322 
    323     public override IOperation Apply() {
    324       if (MutatorParameter.ActualValue == null)
    325         return null;
    326       return base.Apply();
    327     }
    328   }
    329 }
     1ണഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊഊ
  • trunk/sources/HeuristicLab.Algorithms.EvolutionStrategy/3.3/Plugin.cs.frame

    r13321 r14185  
    11#region License Information
    22/* HeuristicLab
    3  * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
     3 * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
    44 *
    55 * This file is part of HeuristicLab.
  • trunk/sources/HeuristicLab.Algorithms.EvolutionStrategy/3.3/Properties/AssemblyInfo.cs.frame

    r14171 r14185  
    11#region License Information
    22/* HeuristicLab
    3  * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
     3 * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
    44 *
    55 * This file is part of HeuristicLab.
  • trunk/sources/HeuristicLab.Algorithms.EvolutionStrategy/3.3/WithoutRepeatingBatchedRandomSelector.cs

    r12012 r14185  
    11#region License Information
    22/* HeuristicLab
    3  * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
     3 * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
    44 *
    55 * This file is part of HeuristicLab.
Note: See TracChangeset for help on using the changeset viewer.