Free cookie consent management tool by TermsFeed Policy Generator

Ignore:
Timestamp:
07/05/16 14:05:46 (9 years ago)
Author:
mkommend
Message:

#2604: Removed default ctor arguments for the target variable in regression and classification models.

Location:
trunk/sources/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/TimeSeriesPrognosis
Files:
3 edited

Legend:

Unmodified
Added
Removed
  • trunk/sources/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/TimeSeriesPrognosis/Models/ConstantTimeSeriesPrognosisModel.cs

    r13993 r14000  
    3939    }
    4040
    41     public ConstantTimeSeriesPrognosisModel(double constant, string targetVariable = "Target") : base(constant, targetVariable) { }
     41    public ConstantTimeSeriesPrognosisModel(double constant, string targetVariable) : base(constant, targetVariable) { }
    4242
    4343    public IEnumerable<IEnumerable<double>> GetPrognosedValues(IDataset dataset, IEnumerable<int> rows, IEnumerable<int> horizons) {
  • trunk/sources/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/TimeSeriesPrognosis/TimeSeriesPrognosisResults.cs

    r13100 r14000  
    373373      //mean model
    374374      double trainingMean = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.TrainingIndices).Average();
    375       var meanModel = new ConstantModel(trainingMean);
     375      var meanModel = new ConstantModel(trainingMean, problemData.TargetVariable);
    376376
    377377      //AR1 model
     
    395395      PrognosisTrainingMeanAbsoluteError = errorState == OnlineCalculatorError.None ? trainingMAE : double.NaN;
    396396      double trainingR = OnlinePearsonsRCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);
    397       PrognosisTrainingRSquared = errorState == OnlineCalculatorError.None ? trainingR*trainingR : double.NaN;
     397      PrognosisTrainingRSquared = errorState == OnlineCalculatorError.None ? trainingR * trainingR : double.NaN;
    398398      double trainingRelError = OnlineMeanAbsolutePercentageErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);
    399399      PrognosisTrainingRelativeError = errorState == OnlineCalculatorError.None ? trainingRelError : double.NaN;
     
    431431      PrognosisTestMeanAbsoluteError = errorState == OnlineCalculatorError.None ? testMAE : double.NaN;
    432432      double testR = OnlinePearsonsRCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState);
    433       PrognosisTestRSquared = errorState == OnlineCalculatorError.None ? testR*testR : double.NaN;
     433      PrognosisTestRSquared = errorState == OnlineCalculatorError.None ? testR * testR : double.NaN;
    434434      double testRelError = OnlineMeanAbsolutePercentageErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState);
    435435      PrognosisTestRelativeError = errorState == OnlineCalculatorError.None ? testRelError : double.NaN;
     
    448448        //mean model
    449449        double trainingMean = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.TrainingIndices).Average();
    450         var meanModel = new ConstantModel(trainingMean);
     450        var meanModel = new ConstantModel(trainingMean, problemData.TargetVariable);
    451451
    452452        //AR1 model
  • trunk/sources/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/TimeSeriesPrognosis/TimeSeriesPrognosisSolutionBase.cs

    r13100 r14000  
    150150      OnlineCalculatorError errorState;
    151151      double trainingMean = ProblemData.TrainingIndices.Any() ? ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices).Average() : double.NaN;
    152       var meanModel = new ConstantModel(trainingMean);
     152      var meanModel = new ConstantModel(trainingMean,ProblemData.TargetVariable);
    153153
    154154      double alpha, beta;
Note: See TracChangeset for help on using the changeset viewer.