Changeset 13916
- Timestamp:
- 06/17/16 14:46:06 (8 years ago)
- Location:
- trunk/sources
- Files:
-
- 3 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/MultiObjective/SymbolicRegressionMultiObjectiveEvaluator.cs
r13670 r13916 80 80 Parameters.Add(new FixedValueParameter<BoolValue>(UseConstantOptimizationParameterName, "", new BoolValue(false))); 81 81 Parameters.Add(new FixedValueParameter<IntValue>(ConstantOptimizationIterationsParameterName, "The number of iterations constant optimization should be applied.", new IntValue(5))); 82 Parameters.Add(new FixedValueParameter<BoolValue>(ConstantOptimizationUpdateVariableWeightsParameterName, "Determines if the variable weights in the tree should be optimized during constant optimization.", new BoolValue(true)) );82 Parameters.Add(new FixedValueParameter<BoolValue>(ConstantOptimizationUpdateVariableWeightsParameterName, "Determines if the variable weights in the tree should be optimized during constant optimization.", new BoolValue(true)) { Hidden = true }); 83 83 } 84 84 -
trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/SingleObjective/Evaluators/SymbolicRegressionConstantOptimizationEvaluator.cs
r13900 r13916 96 96 : base() { 97 97 Parameters.Add(new FixedValueParameter<IntValue>(ConstantOptimizationIterationsParameterName, "Determines how many iterations should be calculated while optimizing the constant of a symbolic expression tree (0 indicates other or default stopping criterion).", new IntValue(10), true)); 98 Parameters.Add(new FixedValueParameter<DoubleValue>(ConstantOptimizationImprovementParameterName, "Determines the relative improvement which must be achieved in the constant optimization to continue with it (0 indicates other or default stopping criterion).", new DoubleValue(0), true) );98 Parameters.Add(new FixedValueParameter<DoubleValue>(ConstantOptimizationImprovementParameterName, "Determines the relative improvement which must be achieved in the constant optimization to continue with it (0 indicates other or default stopping criterion).", new DoubleValue(0), true) { Hidden = true }); 99 99 Parameters.Add(new FixedValueParameter<PercentValue>(ConstantOptimizationProbabilityParameterName, "Determines the probability that the constants are optimized", new PercentValue(1), true)); 100 100 Parameters.Add(new FixedValueParameter<PercentValue>(ConstantOptimizationRowsPercentageParameterName, "Determines the percentage of the rows which should be used for constant optimization", new PercentValue(1), true)); 101 Parameters.Add(new FixedValueParameter<BoolValue>(UpdateConstantsInTreeParameterName, "Determines if the constants in the tree should be overwritten by the optimized constants.", new BoolValue(true)) );102 Parameters.Add(new FixedValueParameter<BoolValue>(UpdateVariableWeightsParameterName, "Determines if the variable weights in the tree should be optimized.", new BoolValue(true)) );101 Parameters.Add(new FixedValueParameter<BoolValue>(UpdateConstantsInTreeParameterName, "Determines if the constants in the tree should be overwritten by the optimized constants.", new BoolValue(true)) { Hidden = true }); 102 Parameters.Add(new FixedValueParameter<BoolValue>(UpdateVariableWeightsParameterName, "Determines if the variable weights in the tree should be optimized.", new BoolValue(true)) { Hidden = true }); 103 103 } 104 104 -
trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Evaluators/SymbolicDataAnalysisEvaluator.cs
r12012 r13916 93 93 public SymbolicDataAnalysisEvaluator() 94 94 : base() { 95 Parameters.Add(new ValueLookupParameter<IRandom>(RandomParameterName, "The random generator to use.") );96 Parameters.Add(new LookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>(SymbolicDataAnalysisTreeInterpreterParameterName, "The interpreter that should be used to calculate the output values of the symbolic data analysis tree.") );97 Parameters.Add(new LookupParameter<ISymbolicExpressionTree>(SymbolicExpressionTreeParameterName, "The symbolic data analysis solution encoded as a symbolic expression tree.") );98 Parameters.Add(new ValueLookupParameter<T>(ProblemDataParameterName, "The problem data on which the symbolic data analysis solution should be evaluated.") );99 Parameters.Add(new ValueLookupParameter<IntRange>(EvaluationPartitionParameterName, "The start index of the dataset partition on which the symbolic data analysis solution should be evaluated.") );100 Parameters.Add(new ValueLookupParameter<DoubleLimit>(EstimationLimitsParameterName, "The upper and lower limit that should be used as cut off value for the output values of symbolic data analysis trees.") );101 Parameters.Add(new ValueLookupParameter<PercentValue>(RelativeNumberOfEvaluatedSamplesParameterName, "The relative number of samples of the dataset partition, which should be randomly chosen for evaluation between the start and end index.") );102 Parameters.Add(new LookupParameter<BoolValue>(ApplyLinearScalingParameterName, "Flag that indicates if the individual should be linearly scaled before evaluating.") );103 Parameters.Add(new ValueLookupParameter<StringValue>(ValidRowIndicatorParameterName, "An indicator variable in the data set that specifies which rows should be evaluated (those for which the indicator <> 0) (optional).") );95 Parameters.Add(new ValueLookupParameter<IRandom>(RandomParameterName, "The random generator to use.") { Hidden = true }); 96 Parameters.Add(new LookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>(SymbolicDataAnalysisTreeInterpreterParameterName, "The interpreter that should be used to calculate the output values of the symbolic data analysis tree.") { Hidden = true }); 97 Parameters.Add(new LookupParameter<ISymbolicExpressionTree>(SymbolicExpressionTreeParameterName, "The symbolic data analysis solution encoded as a symbolic expression tree.") { Hidden = true }); 98 Parameters.Add(new ValueLookupParameter<T>(ProblemDataParameterName, "The problem data on which the symbolic data analysis solution should be evaluated.") { Hidden = true }); 99 Parameters.Add(new ValueLookupParameter<IntRange>(EvaluationPartitionParameterName, "The start index of the dataset partition on which the symbolic data analysis solution should be evaluated.") { Hidden = true }); 100 Parameters.Add(new ValueLookupParameter<DoubleLimit>(EstimationLimitsParameterName, "The upper and lower limit that should be used as cut off value for the output values of symbolic data analysis trees.") { Hidden = true }); 101 Parameters.Add(new ValueLookupParameter<PercentValue>(RelativeNumberOfEvaluatedSamplesParameterName, "The relative number of samples of the dataset partition, which should be randomly chosen for evaluation between the start and end index.") { Hidden = true }); 102 Parameters.Add(new LookupParameter<BoolValue>(ApplyLinearScalingParameterName, "Flag that indicates if the individual should be linearly scaled before evaluating.") { Hidden = true }); 103 Parameters.Add(new ValueLookupParameter<StringValue>(ValidRowIndicatorParameterName, "An indicator variable in the data set that specifies which rows should be evaluated (those for which the indicator <> 0) (optional).") { Hidden = true }); 104 104 } 105 105
Note: See TracChangeset
for help on using the changeset viewer.