Changeset 13823 for branches/HeuristicLab.RegressionSolutionGradientView/HeuristicLab.Algorithms.DataAnalysis
- Timestamp:
- 05/03/16 09:47:26 (9 years ago)
- Location:
- branches/HeuristicLab.RegressionSolutionGradientView/HeuristicLab.Algorithms.DataAnalysis/3.4
- Files:
-
- 4 edited
Legend:
- Unmodified
- Added
- Removed
-
branches/HeuristicLab.RegressionSolutionGradientView/HeuristicLab.Algorithms.DataAnalysis/3.4/GaussianProcess/GaussianProcessModel.cs
r13784 r13823 346 346 } 347 347 348 public IEnumerable<double> GetEstimatedVariance (IDataset dataset, IEnumerable<int> rows) {348 public IEnumerable<double> GetEstimatedVariances(IDataset dataset, IEnumerable<int> rows) { 349 349 try { 350 350 if (x == null) { -
branches/HeuristicLab.RegressionSolutionGradientView/HeuristicLab.Algorithms.DataAnalysis/3.4/GaussianProcess/GaussianProcessRegressionSolution.cs
r12012 r13823 33 33 [Item("GaussianProcessRegressionSolution", "Represents a Gaussian process solution for a regression problem which can be visualized in the GUI.")] 34 34 [StorableClass] 35 public sealed class GaussianProcessRegressionSolution : RegressionSolution, IGaussianProcessSolution {35 public sealed class GaussianProcessRegressionSolution : RegressionSolution, IGaussianProcessSolution, IConfidenceBoundRegressionSolution { 36 36 private new readonly Dictionary<int, double> evaluationCache; 37 37 … … 61 61 } 62 62 63 public IEnumerable<double> EstimatedVariance {64 get { return GetEstimatedVariance (Enumerable.Range(0, ProblemData.Dataset.Rows)); }63 public IEnumerable<double> EstimatedVariances { 64 get { return GetEstimatedVariances(Enumerable.Range(0, ProblemData.Dataset.Rows)); } 65 65 } 66 public IEnumerable<double> EstimatedTrainingVariance {67 get { return GetEstimatedVariance (ProblemData.TrainingIndices); }66 public IEnumerable<double> EstimatedTrainingVariances { 67 get { return GetEstimatedVariances(ProblemData.TrainingIndices); } 68 68 } 69 public IEnumerable<double> EstimatedTestVariance {70 get { return GetEstimatedVariance (ProblemData.TestIndices); }69 public IEnumerable<double> EstimatedTestVariances { 70 get { return GetEstimatedVariances(ProblemData.TestIndices); } 71 71 } 72 72 73 public IEnumerable<double> GetEstimatedVariance (IEnumerable<int> rows) {73 public IEnumerable<double> GetEstimatedVariances(IEnumerable<int> rows) { 74 74 var rowsToEvaluate = rows.Except(evaluationCache.Keys); 75 75 var rowsEnumerator = rowsToEvaluate.GetEnumerator(); 76 var valuesEnumerator = Model.GetEstimatedVariance (ProblemData.Dataset, rowsToEvaluate).GetEnumerator();76 var valuesEnumerator = Model.GetEstimatedVariances(ProblemData.Dataset, rowsToEvaluate).GetEnumerator(); 77 77 78 78 while (rowsEnumerator.MoveNext() & valuesEnumerator.MoveNext()) { -
branches/HeuristicLab.RegressionSolutionGradientView/HeuristicLab.Algorithms.DataAnalysis/3.4/GaussianProcess/StudentTProcessModel.cs
r13784 r13823 363 363 } 364 364 365 public IEnumerable<double> GetEstimatedVariance (IDataset dataset, IEnumerable<int> rows) {365 public IEnumerable<double> GetEstimatedVariances(IDataset dataset, IEnumerable<int> rows) { 366 366 try { 367 367 if (x == null) { -
branches/HeuristicLab.RegressionSolutionGradientView/HeuristicLab.Algorithms.DataAnalysis/3.4/Interfaces/IGaussianProcessModel.cs
r12509 r13823 20 20 #endregion 21 21 22 using System.Collections.Generic;23 22 using HeuristicLab.Problems.DataAnalysis; 24 23 … … 27 26 /// Interface to represent a Gaussian process posterior 28 27 /// </summary> 29 public interface IGaussianProcessModel : I RegressionModel {28 public interface IGaussianProcessModel : IConfidenceBoundRegressionModel { 30 29 double NegativeLogLikelihood { get; } 31 30 double SigmaNoise { get; } … … 34 33 double[] HyperparameterGradients { get; } 35 34 36 IEnumerable<double> GetEstimatedVariance(IDataset ds, IEnumerable<int> rows);37 35 void FixParameters(); 38 36 }
Note: See TracChangeset
for help on using the changeset viewer.