Changeset 13674 for branches/ichiriac
- Timestamp:
- 03/09/16 16:01:34 (9 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
branches/ichiriac/HeuristicLab.Algorithms.DifferentialEvolution/DifferentialEvolution.cs
r13632 r13674 24 24 public Func<IEnumerable<double>, double> Evaluation; 25 25 26 27 26 public override Type ProblemType 28 27 { … … 44 43 private const string PopulationSizeParameterName = "PopulationSize"; 45 44 private const string ScalingFactorParameterName = "ScalingFactor"; 46 47 RealVector bestSolution = null; 48 double bestSolutionQuality = double.PositiveInfinity; 49 RealVector trialVector = null; 50 RealVector selectionVector = null; 51 52 45 private const string ValueToReachParameterName = "ValueToReach"; 53 46 #endregion 54 47 … … 78 71 get { return (ValueParameter<DoubleValue>)Parameters[ScalingFactorParameterName]; } 79 72 } 73 public ValueParameter<DoubleValue> ValueToReachParameter 74 { 75 get { return (ValueParameter<DoubleValue>)Parameters[ValueToReachParameterName]; } 76 } 80 77 #endregion 81 78 … … 112 109 set { PopulationSizeParameter.Value = value; } 113 110 } 111 public Double ValueToReach 112 { 113 get { return ValueToReachParameter.Value.Value; } 114 set { ValueToReachParameter.Value.Value = value; } 115 } 114 116 #endregion 115 117 … … 119 121 get { return ((DoubleValue)Results["Best Quality"].Value).Value; } 120 122 set { ((DoubleValue)Results["Best Quality"].Value).Value = value; } 123 } 124 125 private double VTRBestQuality 126 { 127 get { return ((DoubleValue)Results["VTR"].Value).Value; } 128 set { ((DoubleValue)Results["VTR"].Value).Value = value; } 121 129 } 122 130 … … 170 178 Parameters.Add(new ValueParameter<DoubleValue>(CrossoverProbabilityParameterName, "The value for crossover rate", new DoubleValue(0.88))); 171 179 Parameters.Add(new ValueParameter<DoubleValue>(ScalingFactorParameterName, "The value for scaling factor", new DoubleValue(0.47))); 180 Parameters.Add(new ValueParameter<DoubleValue>(ValueToReachParameterName, "Value to reach (VTR) parameter", new DoubleValue(0.000001))); 172 181 } 173 182 174 183 protected override void Run(CancellationToken cancellationToken) 175 184 { 176 177 // Set up the algorithm178 if (SetSeedRandomly) Seed = new System.Random().Next();179 _random.Reset(Seed);180 185 181 186 // Set up the results display … … 184 189 Results.Add(new Result("Best Solution", new RealVector())); 185 190 Results.Add(new Result("Best Quality", new DoubleValue(double.NaN))); 191 Results.Add(new Result("VTR", new DoubleValue(double.NaN))); 186 192 var table = new DataTable("Qualities"); 187 193 table.Rows.Add(new DataRow("Best Quality")); 188 194 Results.Add(new Result("Qualities", table)); 195 189 196 190 197 //problem variables … … 194 201 var range = ub - lb; 195 202 196 int evals = 0; 197 198 199 //initialize the vectors 200 var _mutantVectors = new double[PopulationSizeParameter.Value.Value][]; 201 var _solutions = new double[PopulationSizeParameter.Value.Value][]; 202 var _trialVectors = new double[PopulationSizeParameter.Value.Value][]; 203 204 for (var i = 0; i < _mutantVectors.Length; i++) 203 double[,] populationOld = new double[PopulationSizeParameter.Value.Value, Problem.ProblemSize.Value]; 204 double[,] mutationPopulation = new double[PopulationSizeParameter.Value.Value, Problem.ProblemSize.Value]; 205 double[,] trialPopulation = new double[PopulationSizeParameter.Value.Value, Problem.ProblemSize.Value]; 206 double[] bestPopulation = new double[Problem.ProblemSize.Value]; 207 double[] bestPopulationIteration = new double[Problem.ProblemSize.Value]; 208 int evals = 0; // number of function evaluations 209 210 //create initial population 211 //population is a matrix of size PopulationSize*ProblemSize 212 for (int i = 0; i < PopulationSizeParameter.Value.Value; i++) 205 213 { 206 _solutions[i] = new double[PopulationSizeParameter.Value.Value]; 207 _mutantVectors[i] = new double[PopulationSizeParameter.Value.Value]; 208 _trialVectors[i] = new double[PopulationSizeParameter.Value.Value]; 214 for (int j = 0; j < Problem.ProblemSize.Value; ++j) 215 { 216 populationOld[i, j] = _random.NextDouble() * range + lb; 217 } 209 218 } 210 219 211 //create initial population 212 for (int i = 0; i < _solutions.Length; ++i) 220 //evaluate the best member after the intialiazation 221 //the idea is to select first member and after that to check the others members from the population 222 223 int best_index = 0; 224 double[] populationRow = new double[Problem.ProblemSize.Value]; 225 226 bestPopulation = Get_ith_row(populationOld, best_index); 227 RealVector bestPopulationVector = new RealVector(bestPopulation); 228 double bestPopulationValue = Obj(bestPopulationVector, evals); 229 RealVector selectionVector; 230 RealVector trialVector; 231 double qtrial; 232 233 234 for (var i = 0; i < PopulationSizeParameter.Value.Value; i++) 213 235 { 214 for (int j = 0; j < _solutions[i].Length; ++j) 215 { 216 _solutions[i][j] = _random.NextDouble() * range + lb; 236 populationRow = Get_ith_row(populationOld, i); 237 trialVector = new RealVector(populationRow); 238 239 qtrial = Obj(trialVector, evals); 240 241 if (qtrial > bestPopulationValue) 242 { 243 bestPopulationVector = new RealVector(populationRow); 244 bestPopulationValue = Obj(bestPopulationVector, evals); 245 best_index = i; 217 246 } 218 247 } 219 248 220 bestSolution = new RealVector((double[])_solutions[0].Clone()); 249 int iterations = 1; 250 221 251 // Loop until iteration limit reached or canceled. 222 while (evals < MaximumEvaluations && !cancellationToken.IsCancellationRequested) 252 //todo replace with a function 253 while (evals < MaximumEvaluations 254 && !cancellationToken.IsCancellationRequested 255 && bestPopulationValue > Problem.BestKnownQuality.Value + ValueToReachParameter.Value.Value) 223 256 { 224 257 225 evals++; 226 //mutation 227 for (int i = 0; i < _mutantVectors.Length; ++i) 228 { 229 int r1 = _random.Next(0, _solutions.Length), 230 r2 = _random.Next(0, _solutions.Length), 231 r3 = _random.Next(0, _solutions.Length); 232 233 for (int j = 0; j < _mutantVectors[i].Length; ++j) 258 //mutation DE/rand/1/bin; classic DE 259 for (int i = 0; i < PopulationSizeParameter.Value.Value; i++) 260 { 261 int r1 = _random.Next(0, PopulationSizeParameter.Value.Value), 262 r2 = _random.Next(0, PopulationSizeParameter.Value.Value), 263 r3 = _random.Next(0, PopulationSizeParameter.Value.Value); 264 265 for (int j = 0; j < Get_ith_row(mutationPopulation, i).Length; j++) 234 266 { 235 _mutantVectors[i][j] = _solutions[r1][j] + 236 ScalingFactorParameter.Value.Value * (_solutions[r2][j] - _solutions[r3][j]); 237 if (_mutantVectors[i][j] > ub) _mutantVectors[i][j] = ub; 238 if (_mutantVectors[i][j] < lb) _mutantVectors[i][j] = lb; 267 mutationPopulation[i,j] = populationOld[r1,j] + 268 ScalingFactorParameter.Value.Value * (populationOld[r2,j] - populationOld[r3,j]); 269 //check the problem upper and lower bounds 270 if (mutationPopulation[i,j] > ub) mutationPopulation[i,j] = ub; 271 if (mutationPopulation[i,j] < lb) mutationPopulation[i,j] = lb; 239 272 } 240 273 } 241 274 242 // crossover243 for (int i = 0; i < _trialVectors.Length; ++i)244 { 245 int rnbr = _random.Next(0, _trialVectors[i].Length);246 for (int j = 0; j < _mutantVectors[i].Length; ++j)275 //uniform crossover 276 for (int i = 0; i < PopulationSizeParameter.Value.Value; i++) 277 { 278 double rnbr = Math.Floor(_random.NextDouble() * Problem.ProblemSize.Value); 279 for (int j = 0; j < Get_ith_row(mutationPopulation, i).Length; j++) 247 280 { 248 281 if (_random.NextDouble() <= CrossoverProbabilityParameter.Value.Value || j == rnbr) 249 282 { 250 _trialVectors[i][j] = _mutantVectors[i][j];283 trialPopulation[i,j] = mutationPopulation[i,j]; 251 284 } 252 285 else 253 286 { 254 _trialVectors[i][j] = _solutions[i][j];287 trialPopulation[i,j] = populationOld[i,j]; 255 288 } 256 289 } 257 290 } 258 291 259 //selection 260 261 for (int i = 0; i < _solutions.Length; ++i) 262 { 263 selectionVector = new RealVector(_solutions[i]); 264 trialVector = new RealVector(_trialVectors[i]); 265 266 var qselection = Obj(selectionVector); 267 var qtrial = Obj(trialVector); 268 269 270 if (qtrial < qselection) 292 //One-to-One Survivor Selection 293 for (int i = 0; i < PopulationSizeParameter.Value.Value; i++) 294 { 295 selectionVector = new RealVector(Get_ith_row(populationOld, i)); 296 trialVector = new RealVector(Get_ith_row(trialPopulation, i)); 297 298 var selectionEval = Obj(selectionVector, evals); 299 var trailEval = Obj(trialVector, evals); 300 301 302 if (trailEval < selectionEval) 271 303 { 272 _solutions[i] = (double[])_trialVectors[i].Clone(); 304 for (int j = 0; j < Get_ith_row(populationOld, i).Length; j++) 305 { 306 populationOld[i, j] = trialPopulation[i, j]; 307 } 273 308 } 274 309 } 275 var currentBestQuality = Obj(bestSolution); 310 276 311 //update the best candidate 277 for (int i = 0; i < _solutions.Length; ++i) 278 { 279 selectionVector = new RealVector(_solutions[i]); 280 var quality = Obj(selectionVector); 281 if (quality < currentBestQuality) 312 for (int i = 0; i < PopulationSizeParameter.Value.Value; i++) 313 { 314 evals = evals + 1; 315 selectionVector = new RealVector(Get_ith_row(populationOld, i)); 316 var quality = Obj(selectionVector, evals); 317 if (quality < bestPopulationValue) 282 318 { 283 best Solution= (RealVector)selectionVector.Clone();284 best SolutionQuality= quality;319 bestPopulationVector = (RealVector)selectionVector.Clone(); 320 bestPopulationValue = quality; 285 321 } 286 322 } 323 324 iterations = iterations + 1; 287 325 288 326 //update the results 289 327 ResultsEvaluations = evals; 290 ResultsBestSolution = bestSolution; 291 ResultsBestQuality = bestSolutionQuality; 328 ResultsIterations = iterations; 329 ResultsBestSolution = bestPopulationVector; 330 ResultsBestQuality = bestPopulationValue; 292 331 293 332 //update the results in view 294 if (evals % 100 == 0) ResultsQualitiesBest.Values.Add(bestSolutionQuality); 333 if (evals % 100 == 0 ) ResultsQualitiesBest.Values.Add(bestPopulationValue); 334 if (bestPopulationValue < Problem.BestKnownQuality.Value + ValueToReachParameter.Value.Value) 335 { 336 VTRBestQuality = bestPopulationValue; 337 } 295 338 } 296 339 … … 298 341 299 342 //evaluate the vector 300 public double Obj(RealVector x) 301 { 343 public double Obj(RealVector x, int evals) 344 { 345 evals = evals + 1; 302 346 if(Problem.Maximization.Value) 303 347 return -Problem.Evaluator.Evaluate(x); … … 305 349 return Problem.Evaluator.Evaluate(x); 306 350 } 351 352 // Get ith row from the matrix 353 public double[] Get_ith_row(double[,] Mat, int i) 354 { 355 double[] tmp = new double[Mat.GetUpperBound(1) + 1]; 356 357 for (int j = 0; j <= Mat.GetUpperBound(1); j++) 358 { 359 tmp[j] = Mat[i, j]; 360 } 361 362 return tmp; 363 } 307 364 } 308 365 }
Note: See TracChangeset
for help on using the changeset viewer.