- Timestamp:
- 07/21/15 16:00:20 (9 years ago)
- Location:
- trunk/sources
- Files:
-
- 8 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/GaussianProcess/GaussianProcessModel.cs
r12790 r12792 168 168 alglib.densesolverreport denseSolveRep; 169 169 170 var res = alglib. trfac.spdmatrixcholesky(ref l, n, false);170 var res = alglib.spdmatrixcholesky(ref l, n, false); 171 171 if (!res) throw new ArgumentException("Matrix is not positive semidefinite"); 172 172 … … 297 297 298 298 // for stddev 299 alglib. ablas.rmatrixlefttrsm(n, newN, l, 0, 0, false, false, 0,sWKs, 0, 0);299 alglib.rmatrixlefttrsm(n, newN, l, 0, 0, false, false, 0, ref sWKs, 0, 0); 300 300 301 301 for (int i = 0; i < newN; i++) { -
trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/Linear/LinearRegression.cs
r12509 r12792 47 47 private LinearRegression(LinearRegression original, Cloner cloner) 48 48 : base(original, cloner) { 49 49 50 } 50 51 public LinearRegression() … … 77 78 throw new NotSupportedException("Linear regression does not support NaN or infinity values in the input dataset."); 78 79 79 alglib.linearmodel lm = new alglib.linearmodel();80 alglib.lrreport ar = new alglib.lrreport();80 alglib.linearmodel lm; 81 alglib.lrreport ar; 81 82 int nRows = inputMatrix.GetLength(0); 82 83 int nFeatures = inputMatrix.GetLength(1) - 1; 83 double[] coefficients = new double[nFeatures + 1]; // last coefficient is for the constant84 double[] coefficients; 84 85 85 86 int retVal = 1; -
trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/Linear/MultinomialLogitClassification.cs
r12622 r12792 74 74 throw new NotSupportedException("Multinomial logit classification does not support NaN or infinity values in the input dataset."); 75 75 76 alglib.logitmodel lm = new alglib.logitmodel();77 alglib.mnlreport rep = new alglib.mnlreport();76 alglib.logitmodel lm; 77 alglib.mnlreport rep; 78 78 int nRows = inputMatrix.GetLength(0); 79 79 int nFeatures = inputMatrix.GetLength(1) - 1; -
trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/TimeSeries/AutoregressiveModeling.cs
r12504 r12792 100 100 101 101 102 alglib.linearmodel lm = new alglib.linearmodel();103 alglib.lrreport ar = new alglib.lrreport();102 alglib.linearmodel lm; 103 alglib.lrreport ar; 104 104 int nRows = inputMatrix.GetLength(0); 105 105 int nFeatures = inputMatrix.GetLength(1) - 1; -
trunk/sources/HeuristicLab.ExtLibs/HeuristicLab.ALGLIB/3.9.0/ALGLIB-3.9.0
- Property svn:ignore
-
old new 1 1 *.user 2 2 obj 3 alglib32_hpc.dll 4 alglib64_hpc.dll 5 alglib_hpc.cs
-
- Property svn:ignore
-
trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Views/3.4/RunCollectionVariableImpactView.cs
r12012 r12792 276 276 } 277 277 // wilcoxon signed rank test is used because the impact values of two variables in a single run are not independent 278 alglib.w sr.wilcoxonsignedranktest(z, z.Length, 0, ref bothTails, ref leftTail, refrightTail);278 alglib.wilcoxonsignedranktest(z, z.Length, 0, out bothTails, out leftTail, out rightTail); 279 279 matrix[row, numberOfRuns + 3] = Math.Round(bothTails, 4); 280 280 } -
trunk/sources/HeuristicLab.Problems.DataAnalysis/3.4/OnlineCalculators/AutoCorrelationCalculator.cs
r12012 r12792 31 31 } 32 32 33 double[] correlations = new double[values.Length];34 alglib.corr .corrr1dcircular(values, values.Length, values, values.Length, refcorrelations);33 double[] correlations; 34 alglib.corrr1dcircular(values, values.Length, values, values.Length, out correlations); 35 35 return correlations; 36 36 } -
trunk/sources/HeuristicLab.Problems.DataAnalysis/3.4/OnlineCalculators/DependencyCalculator/SpearmansRankCorrelationCoefficientCalculator.cs
r12012 r12792 41 41 var original = originalValues.ToArray(); 42 42 var estimated = estimatedValues.ToArray(); 43 rs = alglib. basestat.spearmancorr2(original, estimated, original.Length);43 rs = alglib.spearmancorr2(original, estimated, original.Length); 44 44 errorState = OnlineCalculatorError.None; 45 45 }
Note: See TracChangeset
for help on using the changeset viewer.