Changeset 12745
- Timestamp:
- 07/12/15 11:23:06 (10 years ago)
- Location:
- stable
- Files:
-
- 18 edited
Legend:
- Unmodified
- Added
- Removed
-
stable
- Property svn:mergeinfo changed
/trunk/sources merged: 12189,12358-12359,12361,12461,12674,12720,12744
- Property svn:mergeinfo changed
-
stable/HeuristicLab.Problems.DataAnalysis.Symbolic
- Property svn:mergeinfo changed
/trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic merged: 12189,12358-12359,12361,12674,12720,12744
- Property svn:mergeinfo changed
-
stable/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification
- Property svn:mergeinfo changed
/trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification merged: 12189,12358,12461,12720,12744
- Property svn:mergeinfo changed
-
stable/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification.Views
- Property svn:mergeinfo changed
/trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification.Views merged: 12720
- Property svn:mergeinfo changed
-
stable/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification.Views/3.4/InteractiveSymbolicClassificationSolutionSimplifierViewBase.cs
r12009 r12745 74 74 var impactAndReplacementValues = new Dictionary<ISymbolicExpressionTreeNode, Tuple<double, double>>(); 75 75 foreach (var node in tree.Root.GetSubtree(0).GetSubtree(0).IterateNodesPrefix()) { 76 double impactValue, replacementValue ;77 calculator.CalculateImpactAndReplacementValues(Content.Model, node, Content.ProblemData, Content.ProblemData.TrainingIndices, out impactValue, out replacementValue );76 double impactValue, replacementValue, newQualityForImpactsCalculation; 77 calculator.CalculateImpactAndReplacementValues(Content.Model, node, Content.ProblemData, Content.ProblemData.TrainingIndices, out impactValue, out replacementValue, out newQualityForImpactsCalculation); 78 78 impactAndReplacementValues.Add(node, new Tuple<double, double>(impactValue, replacementValue)); 79 79 } -
stable/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/SymbolicClassificationPruningAnalyzer.cs
r12009 r12745 22 22 using HeuristicLab.Common; 23 23 using HeuristicLab.Core; 24 using HeuristicLab.Data; 24 25 using HeuristicLab.Parameters; 25 26 using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; … … 29 30 [StorableClass] 30 31 public sealed class SymbolicClassificationPruningAnalyzer : SymbolicDataAnalysisSingleObjectivePruningAnalyzer { 31 private const string ImpactValuesCalculatorParameterName = "ImpactValuesCalculator";32 32 private const string PruningOperatorParameterName = "PruningOperator"; 33 p rivate SymbolicClassificationPruningAnalyzer(SymbolicClassificationPruningAnalyzer original, Cloner cloner)34 : base(original, cloner) {33 public IValueParameter<SymbolicClassificationPruningOperator> PruningOperatorParameter { 34 get { return (IValueParameter<SymbolicClassificationPruningOperator>)Parameters[PruningOperatorParameterName]; } 35 35 } 36 public override IDeepCloneable Clone(Cloner cloner) { 37 return new SymbolicClassificationPruningAnalyzer(this, cloner); 36 37 protected override SymbolicDataAnalysisExpressionPruningOperator PruningOperator { 38 get { return PruningOperatorParameter.Value; } 38 39 } 40 41 private SymbolicClassificationPruningAnalyzer(SymbolicClassificationPruningAnalyzer original, Cloner cloner) : base(original, cloner) { } 42 public override IDeepCloneable Clone(Cloner cloner) { return new SymbolicClassificationPruningAnalyzer(this, cloner); } 39 43 40 44 [StorableConstructor] … … 42 46 43 47 public SymbolicClassificationPruningAnalyzer() { 44 Parameters.Add(new ValueParameter<SymbolicDataAnalysisSolutionImpactValuesCalculator>(ImpactValuesCalculatorParameterName, "The impact values calculator", new SymbolicClassificationSolutionImpactValuesCalculator())); 45 Parameters.Add(new ValueParameter<SymbolicDataAnalysisExpressionPruningOperator>(PruningOperatorParameterName, "The operator used to prune trees", new SymbolicClassificationPruningOperator())); 48 Parameters.Add(new ValueParameter<SymbolicClassificationPruningOperator>(PruningOperatorParameterName, "The operator used to prune trees", new SymbolicClassificationPruningOperator(new SymbolicClassificationSolutionImpactValuesCalculator()))); 49 } 50 51 [StorableHook(HookType.AfterDeserialization)] 52 private void AfterDeserialization() { 53 // BackwardsCompatibility3.3 54 55 #region Backwards compatible code, remove with 3.4 56 if (Parameters.ContainsKey(PruningOperatorParameterName)) { 57 var oldParam = Parameters[PruningOperatorParameterName] as ValueParameter<SymbolicDataAnalysisExpressionPruningOperator>; 58 if (oldParam != null) { 59 Parameters.Remove(oldParam); 60 Parameters.Add(new ValueParameter<SymbolicClassificationPruningOperator>(PruningOperatorParameterName, "The operator used to prune trees", new SymbolicClassificationPruningOperator(new SymbolicClassificationSolutionImpactValuesCalculator()))); 61 } 62 } else { 63 // not yet contained 64 Parameters.Add(new ValueParameter<SymbolicClassificationPruningOperator>(PruningOperatorParameterName, "The operator used to prune trees", new SymbolicClassificationPruningOperator(new SymbolicClassificationSolutionImpactValuesCalculator()))); 65 } 66 67 if (Parameters.ContainsKey("PruneOnlyZeroImpactNodes")) { 68 PruningOperator.PruneOnlyZeroImpactNodes = ((IFixedValueParameter<BoolValue>)Parameters["PruneOnlyZeroImpactNodes"]).Value.Value; 69 Parameters.Remove(Parameters["PruneOnlyZeroImpactNodes"]); 70 } 71 if (Parameters.ContainsKey("ImpactThreshold")) { 72 PruningOperator.NodeImpactThreshold = ((IFixedValueParameter<DoubleValue>)Parameters["ImpactThreshold"]).Value.Value; 73 Parameters.Remove(Parameters["ImpactThreshold"]); 74 } 75 if (Parameters.ContainsKey("ImpactValuesCalculator")) { 76 PruningOperator.ImpactValuesCalculator = ((ValueParameter<SymbolicDataAnalysisSolutionImpactValuesCalculator>)Parameters["ImpactValuesCalculator"]).Value; 77 Parameters.Remove(Parameters["ImpactValuesCalculator"]); 78 } 79 #endregion 46 80 } 47 81 } -
stable/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/SymbolicClassificationPruningOperator.cs
r12009 r12745 22 22 #endregion 23 23 24 using System.Collections.Generic; 24 25 using System.Linq; 25 26 using HeuristicLab.Common; 26 27 using HeuristicLab.Core; 28 using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; 27 29 using HeuristicLab.Parameters; 28 30 using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; … … 32 34 [Item("SymbolicClassificationPruningOperator", "An operator which prunes symbolic classificaton trees.")] 33 35 public class SymbolicClassificationPruningOperator : SymbolicDataAnalysisExpressionPruningOperator { 34 private const string ImpactValuesCalculatorParameterName = "ImpactValuesCalculator";35 36 private const string ModelCreatorParameterName = "ModelCreator"; 37 private const string EvaluatorParameterName = "Evaluator"; 36 38 37 39 #region parameter properties … … 39 41 get { return (ILookupParameter<ISymbolicClassificationModelCreator>)Parameters[ModelCreatorParameterName]; } 40 42 } 43 44 public ILookupParameter<ISymbolicClassificationSingleObjectiveEvaluator> EvaluatorParameter { 45 get { 46 return (ILookupParameter<ISymbolicClassificationSingleObjectiveEvaluator>)Parameters[EvaluatorParameterName]; 47 } 48 } 41 49 #endregion 42 50 43 protected SymbolicClassificationPruningOperator(SymbolicClassificationPruningOperator original, Cloner cloner) 44 : base(original, cloner) { 45 } 46 47 public override IDeepCloneable Clone(Cloner cloner) { 48 return new SymbolicClassificationPruningOperator(this, cloner); 49 } 51 protected SymbolicClassificationPruningOperator(SymbolicClassificationPruningOperator original, Cloner cloner) : base(original, cloner) { } 52 public override IDeepCloneable Clone(Cloner cloner) { return new SymbolicClassificationPruningOperator(this, cloner); } 50 53 51 54 [StorableConstructor] 52 55 protected SymbolicClassificationPruningOperator(bool deserializing) : base(deserializing) { } 53 56 54 public SymbolicClassificationPruningOperator( ) {55 Parameters.Add(new ValueParameter<ISymbolicDataAnalysisSolutionImpactValuesCalculator>(ImpactValuesCalculatorParameterName, new SymbolicClassificationSolutionImpactValuesCalculator()));57 public SymbolicClassificationPruningOperator(ISymbolicDataAnalysisSolutionImpactValuesCalculator impactValuesCalculator) 58 : base(impactValuesCalculator) { 56 59 Parameters.Add(new LookupParameter<ISymbolicClassificationModelCreator>(ModelCreatorParameterName)); 60 Parameters.Add(new LookupParameter<ISymbolicClassificationSingleObjectiveEvaluator>(EvaluatorParameterName)); 57 61 } 58 62 59 protected override ISymbolicDataAnalysisModel CreateModel() { 60 var model = ModelCreatorParameter.ActualValue.CreateSymbolicClassificationModel(SymbolicExpressionTree, Interpreter, EstimationLimits.Lower, EstimationLimits.Upper); 61 var problemData = (IClassificationProblemData)ProblemData; 62 var rows = problemData.TrainingIndices; 63 model.RecalculateModelParameters(problemData, rows); 63 [StorableHook(HookType.AfterDeserialization)] 64 private void AfterDeserialization() { 65 // BackwardsCompatibility3.3 66 #region Backwards compatible code, remove with 3.4 67 base.ImpactValuesCalculator = new SymbolicClassificationSolutionImpactValuesCalculator(); 68 if (!Parameters.ContainsKey(EvaluatorParameterName)) { 69 Parameters.Add(new LookupParameter<ISymbolicClassificationSingleObjectiveEvaluator>(EvaluatorParameterName)); 70 } 71 #endregion 72 } 73 74 protected override ISymbolicDataAnalysisModel CreateModel(ISymbolicExpressionTree tree, ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, IDataAnalysisProblemData problemData, DoubleLimit estimationLimits) { 75 var model = ModelCreatorParameter.ActualValue.CreateSymbolicClassificationModel(tree, interpreter, estimationLimits.Lower, estimationLimits.Upper); 76 var classificationProblemData = (IClassificationProblemData)problemData; 77 var rows = classificationProblemData.TrainingIndices; 78 model.RecalculateModelParameters(classificationProblemData, rows); 64 79 return model; 65 80 } 66 81 67 82 protected override double Evaluate(IDataAnalysisModel model) { 68 var classificationModel = (IClassificationModel)model; 69 var classificationProblemData = (IClassificationProblemData)ProblemData; 70 var trainingIndices = Enumerable.Range(FitnessCalculationPartition.Start, FitnessCalculationPartition.Size); 71 var estimatedValues = classificationModel.GetEstimatedClassValues(ProblemData.Dataset, trainingIndices); 72 var targetValues = ProblemData.Dataset.GetDoubleValues(classificationProblemData.TargetVariable, trainingIndices); 73 OnlineCalculatorError errorState; 74 var quality = OnlineAccuracyCalculator.Calculate(targetValues, estimatedValues, out errorState); 75 if (errorState != OnlineCalculatorError.None) return double.NaN; 76 return quality; 83 var evaluator = EvaluatorParameter.ActualValue; 84 var classificationModel = (ISymbolicClassificationModel)model; 85 var classificationProblemData = (IClassificationProblemData)ProblemDataParameter.ActualValue; 86 var rows = Enumerable.Range(FitnessCalculationPartitionParameter.ActualValue.Start, FitnessCalculationPartitionParameter.ActualValue.Size); 87 return evaluator.Evaluate(this.ExecutionContext, classificationModel.SymbolicExpressionTree, classificationProblemData, rows); 88 } 89 90 public static ISymbolicExpressionTree Prune(ISymbolicExpressionTree tree, ISymbolicClassificationModelCreator modelCreator, 91 SymbolicClassificationSolutionImpactValuesCalculator impactValuesCalculator, ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, 92 IClassificationProblemData problemData, DoubleLimit estimationLimits, IEnumerable<int> rows, 93 double nodeImpactThreshold = 0.0, bool pruneOnlyZeroImpactNodes = false) { 94 var clonedTree = (ISymbolicExpressionTree)tree.Clone(); 95 var model = modelCreator.CreateSymbolicClassificationModel(clonedTree, interpreter, estimationLimits.Lower, estimationLimits.Upper); 96 97 var nodes = clonedTree.Root.GetSubtree(0).GetSubtree(0).IterateNodesPrefix().ToList(); 98 double qualityForImpactsCalculation = double.NaN; 99 100 for (int i = 0; i < nodes.Count; ++i) { 101 var node = nodes[i]; 102 if (node is ConstantTreeNode) continue; 103 104 double impactValue, replacementValue, newQualityForImpactsCalculation; 105 impactValuesCalculator.CalculateImpactAndReplacementValues(model, node, problemData, rows, out impactValue, out replacementValue, out newQualityForImpactsCalculation, qualityForImpactsCalculation); 106 107 if (pruneOnlyZeroImpactNodes && !impactValue.IsAlmost(0.0)) continue; 108 if (!pruneOnlyZeroImpactNodes && impactValue > nodeImpactThreshold) continue; 109 110 var constantNode = (ConstantTreeNode)node.Grammar.GetSymbol("Constant").CreateTreeNode(); 111 constantNode.Value = replacementValue; 112 113 ReplaceWithConstant(node, constantNode); 114 i += node.GetLength() - 1; // skip subtrees under the node that was folded 115 116 qualityForImpactsCalculation = newQualityForImpactsCalculation; 117 } 118 return model.SymbolicExpressionTree; 77 119 } 78 120 } -
stable/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/SymbolicClassificationSolutionImpactValuesCalculator.cs
r12009 r12745 47 47 } 48 48 49 public override double CalculateImpactValue(ISymbolicDataAnalysisModel model, ISymbolicExpressionTreeNode node, IDataAnalysisProblemData problemData, IEnumerable<int> rows, double originalQuality= double.NaN) {49 public override double CalculateImpactValue(ISymbolicDataAnalysisModel model, ISymbolicExpressionTreeNode node, IDataAnalysisProblemData problemData, IEnumerable<int> rows, double qualityForImpactsCalculation = double.NaN) { 50 50 double impactValue, replacementValue; 51 CalculateImpactAndReplacementValues(model, node, problemData, rows, out impactValue, out replacementValue, originalQuality); 51 double newQualityForImpactsCalculation; 52 CalculateImpactAndReplacementValues(model, node, problemData, rows, out impactValue, out replacementValue, out newQualityForImpactsCalculation, qualityForImpactsCalculation); 52 53 return impactValue; 53 54 } 54 55 55 56 public override void CalculateImpactAndReplacementValues(ISymbolicDataAnalysisModel model, ISymbolicExpressionTreeNode node, 56 IDataAnalysisProblemData problemData, IEnumerable<int> rows, out double impactValue, out double replacementValue, 57 double originalQuality= Double.NaN) {57 IDataAnalysisProblemData problemData, IEnumerable<int> rows, out double impactValue, out double replacementValue, out double newQualityForImpactsCalculation, 58 double qualityForImpactsCalculation = Double.NaN) { 58 59 var classificationModel = (ISymbolicClassificationModel)model; 59 60 var classificationProblemData = (IClassificationProblemData)problemData; 60 61 61 var dataset = classificationProblemData.Dataset; 62 var targetClassValues = dataset.GetDoubleValues(classificationProblemData.TargetVariable, rows); 63 64 OnlineCalculatorError errorState; 65 if (double.IsNaN(originalQuality)) { 66 var originalClassValues = classificationModel.GetEstimatedClassValues(dataset, rows); 67 originalQuality = OnlineAccuracyCalculator.Calculate(targetClassValues, originalClassValues, out errorState); 68 if (errorState != OnlineCalculatorError.None) originalQuality = 0.0; 69 } 62 if (double.IsNaN(qualityForImpactsCalculation)) 63 qualityForImpactsCalculation = CalculateQualityForImpacts(classificationModel, classificationProblemData, rows); 70 64 71 65 replacementValue = CalculateReplacementValue(classificationModel, node, classificationProblemData, rows); … … 81 75 tempModelParentNode.InsertSubtree(i, constantNode); 82 76 77 OnlineCalculatorError errorState; 78 var dataset = classificationProblemData.Dataset; 79 var targetClassValues = dataset.GetDoubleValues(classificationProblemData.TargetVariable, rows); 83 80 var estimatedClassValues = tempModel.GetEstimatedClassValues(dataset, rows); 84 double newQuality= OnlineAccuracyCalculator.Calculate(targetClassValues, estimatedClassValues, out errorState);85 if (errorState != OnlineCalculatorError.None) newQuality = 0.0;81 newQualityForImpactsCalculation = OnlineAccuracyCalculator.Calculate(targetClassValues, estimatedClassValues, out errorState); 82 if (errorState != OnlineCalculatorError.None) newQualityForImpactsCalculation = 0.0; 86 83 87 impactValue = originalQuality - newQuality; 84 impactValue = qualityForImpactsCalculation - newQualityForImpactsCalculation; 85 } 86 87 public static double CalculateQualityForImpacts(ISymbolicClassificationModel model, IClassificationProblemData problemData, IEnumerable<int> rows) { 88 OnlineCalculatorError errorState; 89 var dataset = problemData.Dataset; 90 var targetClassValues = dataset.GetDoubleValues(problemData.TargetVariable, rows); 91 var originalClassValues = model.GetEstimatedClassValues(dataset, rows); 92 var qualityForImpactsCalculation = OnlineAccuracyCalculator.Calculate(targetClassValues, originalClassValues, out errorState); 93 if (errorState != OnlineCalculatorError.None) qualityForImpactsCalculation = 0.0; 94 95 return qualityForImpactsCalculation; 88 96 } 89 97 } -
stable/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression
- Property svn:mergeinfo changed
/trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression merged: 12189,12358,12461,12720,12744
- Property svn:mergeinfo changed
-
stable/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression.Views
- Property svn:mergeinfo changed
/trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression.Views merged: 12720
- Property svn:mergeinfo changed
-
stable/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression.Views/3.4/InteractiveSymbolicRegressionSolutionSimplifierView.cs
r12009 r12745 63 63 var impactAndReplacementValues = new Dictionary<ISymbolicExpressionTreeNode, Tuple<double, double>>(); 64 64 foreach (var node in tree.Root.GetSubtree(0).GetSubtree(0).IterateNodesPrefix()) { 65 double impactValue, replacementValue ;66 calculator.CalculateImpactAndReplacementValues(Content.Model, node, Content.ProblemData, Content.ProblemData.TrainingIndices, out impactValue, out replacementValue );65 double impactValue, replacementValue, newQualityForImpactsCalculation; 66 calculator.CalculateImpactAndReplacementValues(Content.Model, node, Content.ProblemData, Content.ProblemData.TrainingIndices, out impactValue, out replacementValue, out newQualityForImpactsCalculation); 67 67 impactAndReplacementValues.Add(node, new Tuple<double, double>(impactValue, replacementValue)); 68 68 } -
stable/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/SymbolicRegressionPruningAnalyzer.cs
r12009 r12745 24 24 using HeuristicLab.Common; 25 25 using HeuristicLab.Core; 26 using HeuristicLab.Data; 26 27 using HeuristicLab.Parameters; 27 28 using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; … … 31 32 [StorableClass] 32 33 public sealed class SymbolicRegressionPruningAnalyzer : SymbolicDataAnalysisSingleObjectivePruningAnalyzer { 33 private const string ImpactValuesCalculatorParameterName = "ImpactValuesCalculator";34 34 private const string PruningOperatorParameterName = "PruningOperator"; 35 p rivate SymbolicRegressionPruningAnalyzer(SymbolicRegressionPruningAnalyzer original, Cloner cloner)36 : base(original, cloner) {35 public IValueParameter<SymbolicRegressionPruningOperator> PruningOperatorParameter { 36 get { return (IValueParameter<SymbolicRegressionPruningOperator>)Parameters[PruningOperatorParameterName]; } 37 37 } 38 public override IDeepCloneable Clone(Cloner cloner) { 39 return new SymbolicRegressionPruningAnalyzer(this, cloner); 38 39 protected override SymbolicDataAnalysisExpressionPruningOperator PruningOperator { 40 get { return PruningOperatorParameter.Value; } 40 41 } 42 43 private SymbolicRegressionPruningAnalyzer(SymbolicRegressionPruningAnalyzer original, Cloner cloner) : base(original, cloner) { } 44 public override IDeepCloneable Clone(Cloner cloner) { return new SymbolicRegressionPruningAnalyzer(this, cloner); } 41 45 42 46 [StorableConstructor] … … 44 48 45 49 public SymbolicRegressionPruningAnalyzer() { 46 Parameters.Add(new ValueParameter<SymbolicDataAnalysisSolutionImpactValuesCalculator>(ImpactValuesCalculatorParameterName, "The impact values calculator", new SymbolicRegressionSolutionImpactValuesCalculator())); 47 Parameters.Add(new ValueParameter<SymbolicDataAnalysisExpressionPruningOperator>(PruningOperatorParameterName, "The operator used to prune trees", new SymbolicRegressionPruningOperator())); 50 Parameters.Add(new ValueParameter<SymbolicRegressionPruningOperator>(PruningOperatorParameterName, "The operator used to prune trees", new SymbolicRegressionPruningOperator(new SymbolicRegressionSolutionImpactValuesCalculator()))); 51 } 52 53 [StorableHook(HookType.AfterDeserialization)] 54 private void AfterDeserialization() { 55 // BackwardsCompatibility3.3 56 57 #region Backwards compatible code, remove with 3.4 58 if (Parameters.ContainsKey(PruningOperatorParameterName)) { 59 var oldParam = Parameters[PruningOperatorParameterName] as ValueParameter<SymbolicDataAnalysisExpressionPruningOperator>; 60 if (oldParam != null) { 61 Parameters.Remove(oldParam); 62 Parameters.Add(new ValueParameter<SymbolicRegressionPruningOperator>(PruningOperatorParameterName, "The operator used to prune trees", new SymbolicRegressionPruningOperator(new SymbolicRegressionSolutionImpactValuesCalculator()))); 63 } 64 } else { 65 // not yet contained 66 Parameters.Add(new ValueParameter<SymbolicRegressionPruningOperator>(PruningOperatorParameterName, "The operator used to prune trees", new SymbolicRegressionPruningOperator(new SymbolicRegressionSolutionImpactValuesCalculator()))); 67 } 68 69 70 if (Parameters.ContainsKey("PruneOnlyZeroImpactNodes")) { 71 PruningOperator.PruneOnlyZeroImpactNodes = ((IFixedValueParameter<BoolValue>)Parameters["PruneOnlyZeroImpactNodes"]).Value.Value; 72 Parameters.Remove(Parameters["PruneOnlyZeroImpactNodes"]); 73 } 74 if (Parameters.ContainsKey("ImpactThreshold")) { 75 PruningOperator.NodeImpactThreshold = ((IFixedValueParameter<DoubleValue>)Parameters["ImpactThreshold"]).Value.Value; 76 Parameters.Remove(Parameters["ImpactThreshold"]); 77 } 78 if (Parameters.ContainsKey("ImpactValuesCalculator")) { 79 PruningOperator.ImpactValuesCalculator = ((ValueParameter<SymbolicDataAnalysisSolutionImpactValuesCalculator>)Parameters["ImpactValuesCalculator"]).Value; 80 Parameters.Remove(Parameters["ImpactValuesCalculator"]); 81 } 82 83 #endregion 48 84 } 49 85 } -
stable/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/SymbolicRegressionPruningOperator.cs
r12669 r12745 22 22 #endregion 23 23 24 using System.Collections.Generic; 24 25 using System.Linq; 25 26 using HeuristicLab.Common; 26 27 using HeuristicLab.Core; 28 using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; 27 29 using HeuristicLab.Parameters; 28 30 using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; … … 32 34 [Item("SymbolicRegressionPruningOperator", "An operator which prunes symbolic regression trees.")] 33 35 public class SymbolicRegressionPruningOperator : SymbolicDataAnalysisExpressionPruningOperator { 34 private const string ImpactValuesCalculatorParameterName = "ImpactValuesCalculator"; 36 private const string EvaluatorParameterName = "Evaluator"; 37 38 #region parameter properties 39 public ILookupParameter<ISymbolicRegressionSingleObjectiveEvaluator> EvaluatorParameter { 40 get { return (ILookupParameter<ISymbolicRegressionSingleObjectiveEvaluator>)Parameters[EvaluatorParameterName]; } 41 } 42 #endregion 35 43 36 44 protected SymbolicRegressionPruningOperator(SymbolicRegressionPruningOperator original, Cloner cloner) … … 44 52 protected SymbolicRegressionPruningOperator(bool deserializing) : base(deserializing) { } 45 53 46 public SymbolicRegressionPruningOperator( ) {47 var impactValuesCalculator = new SymbolicRegressionSolutionImpactValuesCalculator();48 Parameters.Add(new ValueParameter<ISymbolicDataAnalysisSolutionImpactValuesCalculator>(ImpactValuesCalculatorParameterName, "The impact values calculator to be used for figuring out the node impacts.", impactValuesCalculator));54 public SymbolicRegressionPruningOperator(ISymbolicDataAnalysisSolutionImpactValuesCalculator impactValuesCalculator) 55 : base(impactValuesCalculator) { 56 Parameters.Add(new LookupParameter<ISymbolicRegressionSingleObjectiveEvaluator>(EvaluatorParameterName)); 49 57 } 50 58 51 protected override ISymbolicDataAnalysisModel CreateModel() { 52 return new SymbolicRegressionModel(SymbolicExpressionTree, Interpreter, EstimationLimits.Lower, EstimationLimits.Upper); 59 [StorableHook(HookType.AfterDeserialization)] 60 private void AfterDeserialization() { 61 // BackwardsCompatibility3.3 62 #region Backwards compatible code, remove with 3.4 63 base.ImpactValuesCalculator = new SymbolicRegressionSolutionImpactValuesCalculator(); 64 if (!Parameters.ContainsKey(EvaluatorParameterName)) { 65 Parameters.Add(new LookupParameter<ISymbolicRegressionSingleObjectiveEvaluator>(EvaluatorParameterName)); 66 } 67 #endregion 68 } 69 70 protected override ISymbolicDataAnalysisModel CreateModel(ISymbolicExpressionTree tree, ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, IDataAnalysisProblemData problemData, DoubleLimit estimationLimits) { 71 return new SymbolicRegressionModel(tree, interpreter, estimationLimits.Lower, estimationLimits.Upper); 53 72 } 54 73 55 74 protected override double Evaluate(IDataAnalysisModel model) { 56 var regressionModel = (IRegressionModel)model; 57 var regressionProblemData = (IRegressionProblemData)ProblemData; 58 var trainingIndices = Enumerable.Range(FitnessCalculationPartition.Start, FitnessCalculationPartition.Size); 59 var estimatedValues = regressionModel.GetEstimatedValues(ProblemData.Dataset, trainingIndices); // also bounds the values 60 var targetValues = ProblemData.Dataset.GetDoubleValues(regressionProblemData.TargetVariable, trainingIndices); 61 OnlineCalculatorError errorState; 62 var quality = OnlinePearsonsRCalculator.Calculate(targetValues, estimatedValues, out errorState); 63 if (errorState != OnlineCalculatorError.None) return double.NaN; 64 return quality*quality; 75 var regressionModel = (ISymbolicRegressionModel)model; 76 var regressionProblemData = (IRegressionProblemData)ProblemDataParameter.ActualValue; 77 var evaluator = EvaluatorParameter.ActualValue; 78 var fitnessEvaluationPartition = FitnessCalculationPartitionParameter.ActualValue; 79 var rows = Enumerable.Range(fitnessEvaluationPartition.Start, fitnessEvaluationPartition.Size); 80 return evaluator.Evaluate(this.ExecutionContext, regressionModel.SymbolicExpressionTree, regressionProblemData, rows); 81 } 82 83 public static ISymbolicExpressionTree Prune(ISymbolicExpressionTree tree, SymbolicRegressionSolutionImpactValuesCalculator impactValuesCalculator, ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, IRegressionProblemData problemData, DoubleLimit estimationLimits, IEnumerable<int> rows, double nodeImpactThreshold = 0.0, bool pruneOnlyZeroImpactNodes = false) { 84 var clonedTree = (ISymbolicExpressionTree)tree.Clone(); 85 var model = new SymbolicRegressionModel(clonedTree, interpreter, estimationLimits.Lower, estimationLimits.Upper); 86 var nodes = clonedTree.Root.GetSubtree(0).GetSubtree(0).IterateNodesPrefix().ToList(); // skip the nodes corresponding to the ProgramRootSymbol and the StartSymbol 87 88 double qualityForImpactsCalculation = double.NaN; // pass a NaN value initially so the impact calculator will calculate the quality 89 90 for (int i = 0; i < nodes.Count; ++i) { 91 var node = nodes[i]; 92 if (node is ConstantTreeNode) continue; 93 94 double impactValue, replacementValue; 95 double newQualityForImpactsCalculation; 96 impactValuesCalculator.CalculateImpactAndReplacementValues(model, node, problemData, rows, out impactValue, out replacementValue, out newQualityForImpactsCalculation, qualityForImpactsCalculation); 97 98 if (pruneOnlyZeroImpactNodes && !impactValue.IsAlmost(0.0)) continue; 99 if (!pruneOnlyZeroImpactNodes && impactValue > nodeImpactThreshold) continue; 100 101 var constantNode = (ConstantTreeNode)node.Grammar.GetSymbol("Constant").CreateTreeNode(); 102 constantNode.Value = replacementValue; 103 104 ReplaceWithConstant(node, constantNode); 105 i += node.GetLength() - 1; // skip subtrees under the node that was folded 106 107 qualityForImpactsCalculation = newQualityForImpactsCalculation; 108 } 109 return model.SymbolicExpressionTree; 65 110 } 66 111 } -
stable/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/SymbolicRegressionSolutionImpactValuesCalculator.cs
r12669 r12745 48 48 } 49 49 50 public override double CalculateImpactValue(ISymbolicDataAnalysisModel model, ISymbolicExpressionTreeNode node, IDataAnalysisProblemData problemData, IEnumerable<int> rows, double originalQuality= double.NaN) {51 double impactValue, replacementValue ;52 CalculateImpactAndReplacementValues(model, node, problemData, rows, out impactValue, out replacementValue, o riginalQuality);50 public override double CalculateImpactValue(ISymbolicDataAnalysisModel model, ISymbolicExpressionTreeNode node, IDataAnalysisProblemData problemData, IEnumerable<int> rows, double qualityForImpactsCalculation = double.NaN) { 51 double impactValue, replacementValue, newQualityForImpactsCalculation; 52 CalculateImpactAndReplacementValues(model, node, problemData, rows, out impactValue, out replacementValue, out newQualityForImpactsCalculation, qualityForImpactsCalculation); 53 53 return impactValue; 54 54 } 55 55 56 56 public override void CalculateImpactAndReplacementValues(ISymbolicDataAnalysisModel model, ISymbolicExpressionTreeNode node, 57 IDataAnalysisProblemData problemData, IEnumerable<int> rows, out double impactValue, out double replacementValue, 58 double originalQuality= Double.NaN) {57 IDataAnalysisProblemData problemData, IEnumerable<int> rows, out double impactValue, out double replacementValue, out double newQualityForImpactsCalculation, 58 double qualityForImpactsCalculation = Double.NaN) { 59 59 var regressionModel = (ISymbolicRegressionModel)model; 60 60 var regressionProblemData = (IRegressionProblemData)problemData; … … 64 64 65 65 OnlineCalculatorError errorState; 66 if (double.IsNaN(originalQuality)) { 67 var originalValues = regressionModel.GetEstimatedValues(dataset, rows); 68 originalQuality = OnlinePearsonsRCalculator.Calculate(targetValues, originalValues, out errorState); 69 if (errorState != OnlineCalculatorError.None) originalQuality = 0.0; 70 } 66 if (double.IsNaN(qualityForImpactsCalculation)) 67 qualityForImpactsCalculation = CalculateQualityForImpacts(regressionModel, regressionProblemData, rows); 71 68 72 69 replacementValue = CalculateReplacementValue(regressionModel, node, regressionProblemData, rows); … … 83 80 84 81 var estimatedValues = tempModel.GetEstimatedValues(dataset, rows); 85 double newQuality = OnlinePearsonsRCalculator.Calculate(targetValues, estimatedValues, out errorState); 86 if (errorState != OnlineCalculatorError.None) newQuality = 0.0; 82 double r = OnlinePearsonsRCalculator.Calculate(targetValues, estimatedValues, out errorState); 83 if (errorState != OnlineCalculatorError.None) r = 0.0; 84 newQualityForImpactsCalculation = r * r; 87 85 88 impactValue = (originalQuality*originalQuality) - (newQuality*newQuality); 86 impactValue = qualityForImpactsCalculation - newQualityForImpactsCalculation; 87 } 88 89 public static double CalculateQualityForImpacts(ISymbolicRegressionModel model, IRegressionProblemData problemData, IEnumerable<int> rows) { 90 var estimatedValues = model.GetEstimatedValues(problemData.Dataset, rows); // also bounds the values 91 var targetValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows); 92 OnlineCalculatorError errorState; 93 var r = OnlinePearsonsRCalculator.Calculate(targetValues, estimatedValues, out errorState); 94 var quality = r * r; 95 if (errorState != OnlineCalculatorError.None) return double.NaN; 96 return quality; 89 97 } 90 98 } -
stable/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Analyzers/SymbolicDataAnalysisSingleObjectivePruningAnalyzer.cs
r12009 r12745 45 45 private const string TotalNumberOfPrunedSubtreesParameterName = "Number of pruned subtrees"; 46 46 private const string TotalNumberOfPrunedTreesParameterName = "Number of pruned trees"; 47 private const string TotalNumberOfPrunedNodesParameterName = "Number of pruned nodes"; 47 48 private const string RandomParameterName = "Random"; 48 private const string PruneOnlyZeroImpactNodesParameterName = "PruneOnlyZeroImpactNodes";49 private const string NodeImpactThresholdParameterName = "ImpactThreshold";50 private const string PruningOperatorParameterName = "PruningOperator";51 49 private const string ResultsParameterName = "Results"; 52 50 private const string PopulationSizeParameterName = "PopulationSize"; … … 54 52 55 53 #region private members 54 private DataReducer prunedNodesReducer; 56 55 private DataReducer prunedSubtreesReducer; 57 56 private DataReducer prunedTreesReducer; … … 61 60 62 61 #region parameter properties 63 public IValueParameter<SymbolicDataAnalysisExpressionPruningOperator> PruningOperatorParameter {64 get { return (IValueParameter<SymbolicDataAnalysisExpressionPruningOperator>)Parameters[PruningOperatorParameterName]; }65 }66 public IFixedValueParameter<BoolValue> PruneOnlyZeroImpactNodesParameter {67 get { return (IFixedValueParameter<BoolValue>)Parameters[PruneOnlyZeroImpactNodesParameterName]; }68 }69 public IFixedValueParameter<DoubleValue> NodeImpactThresholdParameter {70 get { return (IFixedValueParameter<DoubleValue>)Parameters[NodeImpactThresholdParameterName]; }71 }72 62 public ILookupParameter<IRandom> RandomParameter { 73 63 get { return (ILookupParameter<IRandom>)Parameters[RandomParameterName]; } … … 91 81 92 82 #region properties 93 protected SymbolicDataAnalysisExpressionPruningOperator PruningOperator { get { return PruningOperatorParameter.Value; }}83 protected abstract SymbolicDataAnalysisExpressionPruningOperator PruningOperator { get; } 94 84 protected int UpdateInterval { get { return UpdateIntervalParameter.Value.Value; } } 95 85 … … 112 102 get { return PruningProbabilityParameter.Value.Value; } 113 103 set { PruningProbabilityParameter.Value.Value = value; } 114 }115 116 protected bool PruneOnlyZeroImpactNodes {117 get { return PruneOnlyZeroImpactNodesParameter.Value.Value; }118 set { PruneOnlyZeroImpactNodesParameter.Value.Value = value; }119 }120 protected double NodeImpactThreshold {121 get { return NodeImpactThresholdParameter.Value.Value; }122 set { NodeImpactThresholdParameter.Value.Value = value; }123 104 } 124 105 #endregion … … 140 121 protected SymbolicDataAnalysisSingleObjectivePruningAnalyzer(SymbolicDataAnalysisSingleObjectivePruningAnalyzer original, Cloner cloner) 141 122 : base(original, cloner) { 123 if (original.prunedNodesReducer != null) 124 this.prunedNodesReducer = (DataReducer)original.prunedNodesReducer.Clone(); 142 125 if (original.prunedSubtreesReducer != null) 143 126 this.prunedSubtreesReducer = (DataReducer)original.prunedSubtreesReducer.Clone(); … … 197 180 Parameters.Add(new LookupParameter<IRandom>(RandomParameterName, "The random number generator.")); 198 181 Parameters.Add(new LookupParameter<IDataAnalysisProblemData>(ProblemDataParameterName, "The problem data.")); 199 Parameters.Add(new FixedValueParameter<DoubleValue>(NodeImpactThresholdParameterName, "The impact threshold below which an individual should be pruned.", new DoubleValue(0.0)));200 Parameters.Add(new FixedValueParameter<BoolValue>(PruneOnlyZeroImpactNodesParameterName, "Switch to determine of only zero impact individuals should be pruned.", new BoolValue(false)));201 182 Parameters.Add(new LookupParameter<IntValue>(PopulationSizeParameterName, "The population of individuals.")); 202 183 #endregion … … 225 206 var qualities = Quality.Select(x => x.Value).ToArray(); 226 207 var indices = Enumerable.Range(0, qualities.Length).ToArray(); 227 Array.Sort(qualities, indices); 208 indices.StableSort((a, b) => qualities[a].CompareTo(qualities[b])); 209 228 210 if (!Maximization.Value) Array.Reverse(indices); 229 211 … … 233 215 var empty = new EmptyOperator(); 234 216 235 for (int i = 0; i < subscopes.Count; ++i) {217 for (int i = 0; i < indices.Length; ++i) { 236 218 IOperator @operator; 237 219 if (range.Start <= i && i < range.End && random.NextDouble() <= PruningProbability) … … 250 232 UpdateCounter = 0; 251 233 252 if (pruned SubtreesReducer == null || prunedTreesReducer == null || valuesCollector == null || resultsCollector == null) { InitializeOperators(); }234 if (prunedNodesReducer == null || prunedSubtreesReducer == null || prunedTreesReducer == null || valuesCollector == null || resultsCollector == null) { InitializeOperators(); } 253 235 254 236 var prune = CreatePruningOperation(); 237 var reducePrunedNodes = ExecutionContext.CreateChildOperation(prunedNodesReducer); 255 238 var reducePrunedSubtrees = ExecutionContext.CreateChildOperation(prunedSubtreesReducer); 256 239 var reducePrunedTrees = ExecutionContext.CreateChildOperation(prunedTreesReducer); … … 258 241 var collectResults = ExecutionContext.CreateChildOperation(resultsCollector); 259 242 260 return new OperationCollection { prune, reducePruned Subtrees, reducePrunedTrees, collectValues, collectResults, base.Apply() };243 return new OperationCollection { prune, reducePrunedNodes, reducePrunedSubtrees, reducePrunedTrees, collectValues, collectResults, base.Apply() }; 261 244 } 262 245 263 246 private void InitializeOperators() { 247 prunedNodesReducer = new DataReducer(); 248 prunedNodesReducer.ParameterToReduce.ActualName = PruningOperator.PrunedNodesParameter.ActualName; 249 prunedNodesReducer.ReductionOperation.Value = new ReductionOperation(ReductionOperations.Sum); // sum all the pruned subtrees parameter values 250 prunedNodesReducer.TargetOperation.Value = new ReductionOperation(ReductionOperations.Assign); // asign the sum to the target parameter 251 prunedNodesReducer.TargetParameter.ActualName = TotalNumberOfPrunedNodesParameterName; 252 264 253 prunedSubtreesReducer = new DataReducer(); 265 254 prunedSubtreesReducer.ParameterToReduce.ActualName = PruningOperator.PrunedSubtreesParameter.ActualName; … … 275 264 276 265 valuesCollector = new DataTableValuesCollector(); 266 valuesCollector.CollectedValues.Add(new LookupParameter<IntValue>(TotalNumberOfPrunedNodesParameterName)); 277 267 valuesCollector.CollectedValues.Add(new LookupParameter<IntValue>(TotalNumberOfPrunedSubtreesParameterName)); 278 268 valuesCollector.CollectedValues.Add(new LookupParameter<IntValue>(TotalNumberOfPrunedTreesParameterName)); -
stable/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Interfaces/ISymbolicDataAnalysisImpactValuesCalculator.cs
r11145 r12745 6 6 public interface ISymbolicDataAnalysisSolutionImpactValuesCalculator : IItem { 7 7 double CalculateReplacementValue(ISymbolicDataAnalysisModel model, ISymbolicExpressionTreeNode node, IDataAnalysisProblemData problemData, IEnumerable<int> rows); 8 double CalculateImpactValue(ISymbolicDataAnalysisModel model, ISymbolicExpressionTreeNode node, IDataAnalysisProblemData problemData, IEnumerable<int> rows, double originalQuality= double.NaN);8 double CalculateImpactValue(ISymbolicDataAnalysisModel model, ISymbolicExpressionTreeNode node, IDataAnalysisProblemData problemData, IEnumerable<int> rows, double qualityForImpactsCalculation = double.NaN); 9 9 void CalculateImpactAndReplacementValues(ISymbolicDataAnalysisModel model, ISymbolicExpressionTreeNode node, IDataAnalysisProblemData problemData, 10 IEnumerable<int> rows, out double impactValue, out double replacementValue, double originalQuality= double.NaN);10 IEnumerable<int> rows, out double impactValue, out double replacementValue, out double newQualityForImpactsCalculation, double qualityForImpactsCalculation = double.NaN); 11 11 } 12 12 } -
stable/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/SymbolicDataAnalysisExpressionPruningOperator.cs
r12009 r12745 34 34 [StorableClass] 35 35 [Item("SymbolicExpressionTreePruningOperator", "An operator that replaces introns with constant values in a symbolic expression tree.")] 36 public abstract class SymbolicDataAnalysisExpressionPruningOperator : SingleSuccessorOperator {36 public abstract class SymbolicDataAnalysisExpressionPruningOperator : SingleSuccessorOperator, ISymbolicExpressionTreeOperator { 37 37 #region parameter names 38 38 private const string ProblemDataParameterName = "ProblemData"; … … 41 41 private const string PrunedSubtreesParameterName = "PrunedSubtrees"; 42 42 private const string PrunedTreesParameterName = "PrunedTrees"; 43 private const string PrunedNodesParameterName = "PrunedNodes"; 43 44 private const string FitnessCalculationPartitionParameterName = "FitnessCalculationPartition"; 44 45 private const string NodeImpactThresholdParameterName = "ImpactThreshold"; … … 48 49 private const string EstimationLimitsParameterName = "EstimationLimits"; 49 50 private const string InterpreterParameterName = "SymbolicExpressionTreeInterpreter"; 51 private const string ApplyLinearScalingParameterName = "ApplyLinearScaling"; 50 52 #endregion 51 53 … … 72 74 get { return (ILookupParameter<IntValue>)Parameters[PrunedTreesParameterName]; } 73 75 } 76 public ILookupParameter<IntValue> PrunedNodesParameter { 77 get { return (ILookupParameter<IntValue>)Parameters[PrunedNodesParameterName]; } 78 } 74 79 public IFixedValueParameter<DoubleValue> NodeImpactThresholdParameter { 75 80 get { return (IFixedValueParameter<DoubleValue>)Parameters[NodeImpactThresholdParameterName]; } … … 84 89 get { return (ILookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>)Parameters[InterpreterParameterName]; } 85 90 } 91 public ILookupParameter<BoolValue> ApplyLinearScalingParameter { 92 get { return (ILookupParameter<BoolValue>)Parameters[ApplyLinearScalingParameterName]; } 93 } 86 94 #endregion 87 95 88 96 #region properties 89 protected IDataAnalysisProblemData ProblemData { get { return ProblemDataParameter.ActualValue; } } 90 protected ISymbolicDataAnalysisSolutionImpactValuesCalculator ImpactValuesCalculator { get { return ImpactValuesCalculatorParameter.Value; } } 91 protected IntRange FitnessCalculationPartition { get { return FitnessCalculationPartitionParameter.ActualValue; } } 92 protected bool PruneOnlyZeroImpactNodes { 97 public ISymbolicDataAnalysisSolutionImpactValuesCalculator ImpactValuesCalculator { 98 get { return ImpactValuesCalculatorParameter.Value; } 99 set { ImpactValuesCalculatorParameter.Value = value; } 100 } 101 public bool PruneOnlyZeroImpactNodes { 93 102 get { return PruneOnlyZeroImpactNodesParameter.Value.Value; } 94 103 set { PruneOnlyZeroImpactNodesParameter.Value.Value = value; } 95 104 } 96 p rotecteddouble NodeImpactThreshold {105 public double NodeImpactThreshold { 97 106 get { return NodeImpactThresholdParameter.Value.Value; } 98 107 set { NodeImpactThresholdParameter.Value.Value = value; } 99 108 } 100 protected ISymbolicExpressionTree SymbolicExpressionTree { get { return SymbolicExpressionTreeParameter.ActualValue; } }101 protected DoubleValue Quality { get { return QualityParameter.ActualValue; } }102 protected DoubleLimit EstimationLimits { get { return EstimationLimitsParameter.ActualValue; } }103 protected ISymbolicDataAnalysisExpressionTreeInterpreter Interpreter { get { return InterpreterParameter.ActualValue; } }104 109 #endregion 105 110 … … 109 114 : base(original, cloner) { } 110 115 111 protected SymbolicDataAnalysisExpressionPruningOperator( ) {116 protected SymbolicDataAnalysisExpressionPruningOperator(ISymbolicDataAnalysisSolutionImpactValuesCalculator impactValuesCalculator) { 112 117 #region add parameters 113 118 Parameters.Add(new LookupParameter<IDataAnalysisProblemData>(ProblemDataParameterName)); 114 119 Parameters.Add(new LookupParameter<ISymbolicDataAnalysisModel>(SymbolicDataAnalysisModelParameterName)); 115 120 Parameters.Add(new LookupParameter<IntRange>(FitnessCalculationPartitionParameterName)); 121 Parameters.Add(new LookupParameter<IntValue>(PrunedNodesParameterName, "A counter of how many nodes were pruned.")); 116 122 Parameters.Add(new LookupParameter<IntValue>(PrunedSubtreesParameterName, "A counter of how many subtrees were replaced.")); 117 123 Parameters.Add(new LookupParameter<IntValue>(PrunedTreesParameterName, "A counter of how many trees were pruned.")); … … 122 128 Parameters.Add(new LookupParameter<ISymbolicExpressionTree>(SymbolicExpressionTreeParameterName)); 123 129 Parameters.Add(new LookupParameter<DoubleValue>(QualityParameterName)); 130 Parameters.Add(new LookupParameter<BoolValue>(ApplyLinearScalingParameterName)); 131 Parameters.Add(new ValueParameter<ISymbolicDataAnalysisSolutionImpactValuesCalculator>(ImpactValuesCalculatorParameterName, impactValuesCalculator)); 124 132 #endregion 125 133 } 126 134 127 protected abstract ISymbolicDataAnalysisModel CreateModel(); 135 [StorableHook(HookType.AfterDeserialization)] 136 private void AfterDeserialization() { 137 // BackwardsCompatibility3.3 138 #region Backwards compatible code, remove with 3.4 139 if (!Parameters.ContainsKey(PrunedNodesParameterName)) { 140 Parameters.Add(new LookupParameter<IntValue>(PrunedNodesParameterName, "A counter of how many nodes were pruned.")); 141 } 142 if (!Parameters.ContainsKey(ApplyLinearScalingParameterName)) { 143 Parameters.Add(new LookupParameter<BoolValue>(ApplyLinearScalingParameterName)); 144 } 145 if (!Parameters.ContainsKey(ImpactValuesCalculatorParameterName)) { 146 // value must be set by derived operators (regression/classification) 147 Parameters.Add(new ValueParameter<ISymbolicDataAnalysisSolutionImpactValuesCalculator>(ImpactValuesCalculatorParameterName)); 148 } 149 #endregion 150 } 151 152 protected abstract ISymbolicDataAnalysisModel CreateModel(ISymbolicExpressionTree tree, ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, IDataAnalysisProblemData problemData, DoubleLimit estimationLimits); 128 153 129 154 protected abstract double Evaluate(IDataAnalysisModel model); 130 155 131 156 public override IOperation Apply() { 132 var model = CreateModel(); 133 var nodes = SymbolicExpressionTree.Root.GetSubtree(0).GetSubtree(0).IterateNodesPrefix().ToList(); 134 var rows = Enumerable.Range(FitnessCalculationPartition.Start, FitnessCalculationPartition.Size); 157 var tree = SymbolicExpressionTreeParameter.ActualValue; 158 var problemData = ProblemDataParameter.ActualValue; 159 var fitnessCalculationPartition = FitnessCalculationPartitionParameter.ActualValue; 160 var estimationLimits = EstimationLimitsParameter.ActualValue; 161 var interpreter = InterpreterParameter.ActualValue; 162 163 var model = CreateModel(tree, interpreter, problemData, estimationLimits); 164 var nodes = tree.Root.GetSubtree(0).GetSubtree(0).IterateNodesPrefix().ToList(); 165 var rows = Enumerable.Range(fitnessCalculationPartition.Start, fitnessCalculationPartition.Size).ToList(); 135 166 var prunedSubtrees = 0; 136 167 var prunedTrees = 0; 137 138 double quality = Evaluate(model); 168 var prunedNodes = 0; 169 170 double qualityForImpactsCalculation = double.NaN; 139 171 140 172 for (int i = 0; i < nodes.Count; ++i) { … … 143 175 144 176 double impactValue, replacementValue; 145 ImpactValuesCalculator.CalculateImpactAndReplacementValues(model, node, ProblemData, rows, out impactValue, out replacementValue, quality); 146 147 if (PruneOnlyZeroImpactNodes) { 148 if (!impactValue.IsAlmost(0.0)) continue; 149 } else if (NodeImpactThreshold < impactValue) { 150 continue; 151 } 177 double newQualityForImpacts; 178 ImpactValuesCalculator.CalculateImpactAndReplacementValues(model, node, problemData, rows, out impactValue, out replacementValue, out newQualityForImpacts, qualityForImpactsCalculation); 179 180 if (PruneOnlyZeroImpactNodes && !impactValue.IsAlmost(0.0)) continue; 181 if (!PruneOnlyZeroImpactNodes && impactValue > NodeImpactThreshold) continue; 152 182 153 183 var constantNode = (ConstantTreeNode)node.Grammar.GetSymbol("Constant").CreateTreeNode(); 154 184 constantNode.Value = replacementValue; 155 185 186 var length = node.GetLength(); 156 187 ReplaceWithConstant(node, constantNode); 157 i += node.GetLength() - 1; // skip subtrees under the node that was folded 158 159 quality -= impactValue; 188 i += length - 1; // skip subtrees under the node that was folded 160 189 161 190 prunedSubtrees++; 191 prunedNodes += length; 192 193 qualityForImpactsCalculation = newQualityForImpacts; 162 194 } 163 195 … … 165 197 PrunedSubtreesParameter.ActualValue = new IntValue(prunedSubtrees); 166 198 PrunedTreesParameter.ActualValue = new IntValue(prunedTrees); 199 PrunedNodesParameter.ActualValue = new IntValue(prunedNodes); 200 201 if (prunedSubtrees > 0) // if nothing was pruned then there's no need to re-evaluate the tree 202 QualityParameter.ActualValue.Value = Evaluate(model); 167 203 168 204 return base.Apply(); 169 205 } 170 206 171 pr ivatestatic void ReplaceWithConstant(ISymbolicExpressionTreeNode original, ISymbolicExpressionTreeNode replacement) {207 protected static void ReplaceWithConstant(ISymbolicExpressionTreeNode original, ISymbolicExpressionTreeNode replacement) { 172 208 var parent = original.Parent; 173 209 var i = parent.IndexOfSubtree(original); -
stable/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/SymbolicDataAnalysisSolutionImpactValuesCalculator.cs
r12702 r12745 37 37 protected SymbolicDataAnalysisSolutionImpactValuesCalculator(bool deserializing) : base(deserializing) { } 38 38 public abstract double CalculateReplacementValue(ISymbolicDataAnalysisModel model, ISymbolicExpressionTreeNode node, IDataAnalysisProblemData problemData, IEnumerable<int> rows); 39 public abstract double CalculateImpactValue(ISymbolicDataAnalysisModel model, ISymbolicExpressionTreeNode node, IDataAnalysisProblemData problemData, IEnumerable<int> rows, double originalQuality= double.NaN);40 public abstract void CalculateImpactAndReplacementValues(ISymbolicDataAnalysisModel model, ISymbolicExpressionTreeNode node, IDataAnalysisProblemData problemData, IEnumerable<int> rows, out double impactValue, out double replacementValue, double originalQuality= double.NaN);39 public abstract double CalculateImpactValue(ISymbolicDataAnalysisModel model, ISymbolicExpressionTreeNode node, IDataAnalysisProblemData problemData, IEnumerable<int> rows, double qualityForImpactsCalculation = double.NaN); 40 public abstract void CalculateImpactAndReplacementValues(ISymbolicDataAnalysisModel model, ISymbolicExpressionTreeNode node, IDataAnalysisProblemData problemData, IEnumerable<int> rows, out double impactValue, out double replacementValue, out double newQualityForImpactsCalculation, double qualityForImpactsCalculation = double.NaN); 41 41 42 42 protected static double CalculateReplacementValue(ISymbolicExpressionTreeNode node, ISymbolicExpressionTree sourceTree, ISymbolicDataAnalysisExpressionTreeInterpreter interpreter,
Note: See TracChangeset
for help on using the changeset viewer.