- Timestamp:
- 07/08/15 09:52:09 (9 years ago)
- Location:
- stable
- Files:
-
- 5 edited
Legend:
- Unmodified
- Added
- Removed
-
stable
- Property svn:mergeinfo changed
/trunk/sources merged: 12492,12641
- Property svn:mergeinfo changed
-
stable/HeuristicLab.Problems.DataAnalysis
- Property svn:mergeinfo changed
/trunk/sources/HeuristicLab.Problems.DataAnalysis merged: 12492,12641
- Property svn:mergeinfo changed
-
stable/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/Classification/DiscriminantFunctionClassificationSolutionBase.cs
r12009 r12669 105 105 TestMeanSquaredError = errorState == OnlineCalculatorError.None ? testMSE : double.NaN; 106 106 107 double trainingR 2 = OnlinePearsonsRSquaredCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);108 TrainingRSquared = errorState == OnlineCalculatorError.None ? trainingR 2: double.NaN;109 double testR 2 = OnlinePearsonsRSquaredCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState);110 TestRSquared = errorState == OnlineCalculatorError.None ? testR 2: double.NaN;107 double trainingR = OnlinePearsonsRCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState); 108 TrainingRSquared = errorState == OnlineCalculatorError.None ? trainingR*trainingR : double.NaN; 109 double testR = OnlinePearsonsRCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState); 110 TestRSquared = errorState == OnlineCalculatorError.None ? testR*testR : double.NaN; 111 111 112 112 double trainingNormalizedGini = NormalizedGiniCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState); -
stable/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/Regression/RegressionSolutionBase.cs
r12636 r12669 229 229 TestMeanAbsoluteError = errorState == OnlineCalculatorError.None ? testMAE : double.NaN; 230 230 231 double trainingR 2 = OnlinePearsonsRSquaredCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);232 TrainingRSquared = errorState == OnlineCalculatorError.None ? trainingR 2: double.NaN;233 double testR 2 = OnlinePearsonsRSquaredCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState);234 TestRSquared = errorState == OnlineCalculatorError.None ? testR 2: double.NaN;231 double trainingR = OnlinePearsonsRCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState); 232 TrainingRSquared = errorState == OnlineCalculatorError.None ? trainingR*trainingR : double.NaN; 233 double testR = OnlinePearsonsRCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState); 234 TestRSquared = errorState == OnlineCalculatorError.None ? testR*testR : double.NaN; 235 235 236 236 double trainingRelError = OnlineMeanAbsolutePercentageErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState); -
stable/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/TimeSeriesPrognosis/TimeSeriesPrognosisResults.cs
r12009 r12669 394 394 double trainingMAE = OnlineMeanAbsoluteErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState); 395 395 PrognosisTrainingMeanAbsoluteError = errorState == OnlineCalculatorError.None ? trainingMAE : double.NaN; 396 double trainingR 2 = OnlinePearsonsRSquaredCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);397 PrognosisTrainingRSquared = errorState == OnlineCalculatorError.None ? trainingR 2: double.NaN;396 double trainingR = OnlinePearsonsRCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState); 397 PrognosisTrainingRSquared = errorState == OnlineCalculatorError.None ? trainingR*trainingR : double.NaN; 398 398 double trainingRelError = OnlineMeanAbsolutePercentageErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState); 399 399 PrognosisTrainingRelativeError = errorState == OnlineCalculatorError.None ? trainingRelError : double.NaN; … … 430 430 double testMAE = OnlineMeanAbsoluteErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState); 431 431 PrognosisTestMeanAbsoluteError = errorState == OnlineCalculatorError.None ? testMAE : double.NaN; 432 double testR 2 = OnlinePearsonsRSquaredCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState);433 PrognosisTestRSquared = errorState == OnlineCalculatorError.None ? testR 2: double.NaN;432 double testR = OnlinePearsonsRCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState); 433 PrognosisTestRSquared = errorState == OnlineCalculatorError.None ? testR*testR : double.NaN; 434 434 double testRelError = OnlineMeanAbsolutePercentageErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState); 435 435 PrognosisTestRelativeError = errorState == OnlineCalculatorError.None ? testRelError : double.NaN;
Note: See TracChangeset
for help on using the changeset viewer.