Changeset 12218 for branches/SensitivityEvaluator/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification
- Timestamp:
- 03/17/15 17:22:57 (10 years ago)
- Location:
- branches/SensitivityEvaluator/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4
- Files:
-
- 2 edited
Legend:
- Unmodified
- Added
- Removed
-
branches/SensitivityEvaluator/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/SingleObjective/SymbolicClassificationSingleObjectiveWeightedPerformanceMeasuresEvaluator.cs
r12216 r12218 102 102 IEnumerable<double> estimatedValues = interpreter.GetSymbolicExpressionTreeValues(solution, problemData.Dataset, rows); 103 103 IEnumerable<double> targetClassValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows); 104 IEnumerable<double> boundedEstimatedValues = estimatedValues.LimitToRange(lowerEstimationLimit, upperEstimationLimit); 104 105 OnlineCalculatorError errorState; 105 106 double nmse; … … 109 110 string positiveClassName = problemData.PositiveClass; 110 111 double[] classValues, thresholds; 111 model.ThresholdCalculator.Calculate(problemData, estimatedValues, targetClassValues, out classValues, out thresholds);112 model.ThresholdCalculator.Calculate(problemData, boundedEstimatedValues, targetClassValues, out classValues, out thresholds); 112 113 model.SetThresholdsAndClassValues(thresholds, classValues); 113 114 var performanceCalculator = new ClassificationPerformanceMeasuresCalculator(positiveClassName, problemData.GetClassValue(positiveClassName)); 114 var estimatedClassValues = model.GetEstimatedClassValues( estimatedValues);115 var estimatedClassValues = model.GetEstimatedClassValues(boundedEstimatedValues); 115 116 performanceCalculator.Calculate(targetClassValues, estimatedClassValues); 116 117 if (performanceCalculator.ErrorState != OnlineCalculatorError.None) … … 125 126 nmse = nmseCalculator.NormalizedMeanSquaredError; 126 127 } else { 127 IEnumerable<double> boundedEstimatedValues = estimatedValues.LimitToRange(lowerEstimationLimit, upperEstimationLimit);128 128 nmse = OnlineNormalizedMeanSquaredErrorCalculator.Calculate(targetClassValues, boundedEstimatedValues, out errorState); 129 129 } -
branches/SensitivityEvaluator/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/SymbolicDiscriminantFunctionClassificationModel.cs
r12216 r12218 88 88 var classValuesArr = classValues.ToArray(); 89 89 var thresholdsArr = thresholds.ToArray(); 90 if (thresholdsArr.Length != classValuesArr.Length || thresholdsArr.Length < 1) 90 if (thresholdsArr.Length != classValuesArr.Length || thresholdsArr.Length < 1) 91 91 throw new ArgumentException(); 92 if (!double.IsNegativeInfinity(thresholds.First())) 92 if (!double.IsNegativeInfinity(thresholds.First())) 93 93 throw new ArgumentException(); 94 94 … … 113 113 public override IEnumerable<double> GetEstimatedClassValues(Dataset dataset, IEnumerable<int> rows) { 114 114 if (!Thresholds.Any() && !ClassValues.Any()) throw new ArgumentException("No thresholds and class values were set for the current symbolic classification model."); 115 foreach (var x in GetEstimatedValues(dataset, rows)) { 116 int classIndex = 0; 117 // find first threshold value which is larger than x => class index = threshold index + 1 118 for (int i = 0; i < thresholds.Length; i++) { 119 if (x > thresholds[i]) classIndex++; 120 else break; 121 } 122 yield return classValues.ElementAt(classIndex - 1); 123 } 115 var estimatedValues = GetEstimatedValues(dataset, rows); 116 return GetEstimatedClassValues(estimatedValues); 124 117 } 125 118 public IEnumerable<double> GetEstimatedClassValues(IEnumerable<double> estimatedValues) {
Note: See TracChangeset
for help on using the changeset viewer.