Changeset 12017 for branches/HeuristicLab.EvolutionTracking/HeuristicLab.Problems.DataAnalysis.Symbolic
- Timestamp:
- 02/16/15 16:52:52 (10 years ago)
- Location:
- branches/HeuristicLab.EvolutionTracking/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4
- Files:
-
- 4 edited
Legend:
- Unmodified
- Added
- Removed
-
branches/HeuristicLab.EvolutionTracking/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Analyzers/SymbolicDataAnalysisBottomUpDiversityAnalyzer.cs
r11965 r12017 1 1 #region License Information 2 2 /* HeuristicLab 3 * Copyright (C) 2002-201 4Heuristic and Evolutionary Algorithms Laboratory (HEAL)3 * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL) 4 4 * 5 5 * This file is part of HeuristicLab. … … 21 21 22 22 using HeuristicLab.Analysis; 23 using HeuristicLab.Common; 23 24 using HeuristicLab.Core; 24 25 using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; 25 26 26 27 namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Analyzers { 27 [Item("SymbolicDataAnalysisBottomUpDiversityAnalyzer", "A diversity analyzer based on the bottom-up similaritybetween trees.")]28 [Item("SymbolicDataAnalysisBottomUpDiversityAnalyzer", "A diversity analyzer based on the bottom-up distance between trees.")] 28 29 [StorableClass] 29 30 public class SymbolicDataAnalysisBottomUpDiversityAnalyzer : SingleObjectivePopulationDiversityAnalyzer { … … 31 32 protected SymbolicDataAnalysisBottomUpDiversityAnalyzer(bool deserializing) : base(deserializing) { } 32 33 33 [StorableHook(HookType.AfterDeserialization)] 34 private void AfterDeserialization() { 34 private SymbolicDataAnalysisBottomUpDiversityAnalyzer(SymbolicDataAnalysisBottomUpDiversityAnalyzer original, Cloner cloner) 35 : base(original, cloner) { 36 } 37 38 public override IDeepCloneable Clone(Cloner cloner) { 39 return new SymbolicDataAnalysisBottomUpDiversityAnalyzer(this, cloner); 35 40 } 36 41 -
branches/HeuristicLab.EvolutionTracking/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Analyzers/SymbolicDataAnalysisPhenotypicDiversityAnalyzer.cs
r11291 r12017 22 22 using System.Linq; 23 23 using HeuristicLab.Analysis; 24 using HeuristicLab.Common; 24 25 using HeuristicLab.Core; 25 26 using HeuristicLab.Data; … … 29 30 30 31 namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Analyzers { 31 [Item("SymbolicDataAnalysisPhenotypicDiversityAnalyzer", "An analyzer which calculates diversity based on the phenotypic similaritybetween trees")]32 [Item("SymbolicDataAnalysisPhenotypicDiversityAnalyzer", "An analyzer which calculates diversity based on the phenotypic distance between trees")] 32 33 [StorableClass] 33 34 public class SymbolicDataAnalysisPhenotypicDiversityAnalyzer : SingleObjectivePopulationDiversityAnalyzer { 35 #region parameter names 34 36 private const string SymbolicExpressionTreeParameterName = "SymbolicExpressionTree"; 35 37 private const string EvaluatedValuesParameterName = "EstimatedValues"; … … 37 39 private const string ProblemDataParameterName = "ProblemData"; 38 40 private const string EstimationLimitsParameterName = "EstimationLimits"; 41 #endregion 39 42 43 #region parameter properties 40 44 public IScopeTreeLookupParameter<ISymbolicExpressionTree> SymbolicExpressionTreeParameter { 41 45 get { return (IScopeTreeLookupParameter<ISymbolicExpressionTree>)Parameters[SymbolicExpressionTreeParameterName]; } … … 56 60 get { return (IValueLookupParameter<DoubleLimit>)Parameters[EstimationLimitsParameterName]; } 57 61 } 62 #endregion 58 63 59 64 public SymbolicDataAnalysisPhenotypicDiversityAnalyzer() { 60 65 SimilarityCalculator = new PhenotypicSimilarityCalculator { SolutionVariableName = "SymbolicExpressionTree" }; 61 66 #region add parameters 62 67 Parameters.Add(new ScopeTreeLookupParameter<ISymbolicExpressionTree>(SymbolicExpressionTreeParameterName, "The symbolic expression trees.")); 63 68 Parameters.Add(new ScopeTreeLookupParameter<DoubleArray>(EvaluatedValuesParameterName, "Intermediate estimated values to be saved in the scopes.")); … … 65 70 Parameters.Add(new ValueLookupParameter<IDataAnalysisProblemData>(ProblemDataParameterName, "The problem data on which the symbolic data analysis solution should be evaluated.")); 66 71 Parameters.Add(new ValueLookupParameter<DoubleLimit>(EstimationLimitsParameterName, "The upper and lower limit that should be used as cut off value for the output values of symbolic data analysis trees.")); 72 #endregion 73 } 74 75 [StorableConstructor] 76 protected SymbolicDataAnalysisPhenotypicDiversityAnalyzer(bool deserializing) 77 : base(deserializing) { 78 } 79 80 public override IDeepCloneable Clone(Cloner cloner) { 81 return new SymbolicDataAnalysisPhenotypicDiversityAnalyzer(this, cloner); 82 } 83 84 private SymbolicDataAnalysisPhenotypicDiversityAnalyzer(SymbolicDataAnalysisPhenotypicDiversityAnalyzer original, Cloner cloner) 85 : base(original, cloner) { 67 86 } 68 87 -
branches/HeuristicLab.EvolutionTracking/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/TreeMatching/SymbolicExpressionTreeBottomUpSimilarityCalculator.cs
r11965 r12017 1 1 #region License Information 2 2 /* HeuristicLab 3 * Copyright (C) 2002-201 4Heuristic and Evolutionary Algorithms Laboratory (HEAL)3 * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL) 4 4 * 5 5 * This file is part of HeuristicLab. … … 81 81 82 82 // visit nodes in order of decreasing height to ensure correct mapping 83 var nodes1 = n1.IterateNodesPrefix(). ToList();83 var nodes1 = n1.IterateNodesPrefix().OrderByDescending(x => x.GetDepth()).ToList(); 84 84 var nodes2 = n2.IterateNodesPrefix().ToList(); 85 85 for (int i = 0; i < nodes1.Count; ++i) { … … 98 98 if (w == null) continue; 99 99 100 // at this point we know that v and w are isomorphic, however, the mapping cannot be done directly (as in the paper) because the trees are unordered (subtree order might differ) 101 // the solution is to sort subtrees by label using IterateBreadthOrdered (this will work because the subtrees are isomorphic!) and simultaneously iterate over the two subtrees 100 // at this point we know that v and w are isomorphic, however, the mapping cannot be done directly 101 // (as in the paper) because the trees are unordered (subtree order might differ). the solution is 102 // to sort subtrees from under commutative labels (this will work because the subtrees are isomorphic!) 103 // while iterating over the two subtrees 102 104 var vv = IterateBreadthOrdered(v, comparer).ToList(); 103 105 var ww = IterateBreadthOrdered(w, comparer).ToList(); … … 133 135 foreach (var n in nodes) { 134 136 if (n.SubtreeCount == 0) { 135 var label = Label(n);137 var label = GetLabel(n); 136 138 if (!labelMap.ContainsKey(label)) { 137 139 var z = new GraphNode { SymbolicExpressionTreeNode = n, Label = label }; … … 209 211 } 210 212 211 private static string Label(ISymbolicExpressionTreeNode node) {213 private static string GetLabel(ISymbolicExpressionTreeNode node) { 212 214 if (node.SubtreeCount > 0) 213 215 return node.Symbol.Name; -
branches/HeuristicLab.EvolutionTracking/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/TreeMatching/SymbolicExpressionTreePhenotypicSimilarityCalculator.cs
r11927 r12017 34 34 public ISymbolicDataAnalysisExpressionTreeInterpreter Interpreter { get; set; } 35 35 36 [StorableConstructor] 37 protected PhenotypicSimilarityCalculator(bool deserializing) : base(deserializing) { } 38 36 39 public PhenotypicSimilarityCalculator(PhenotypicSimilarityCalculator original, Cloner cloner) 37 40 : base(original, cloner) { 41 this.ProblemData = original.ProblemData; 42 this.Interpreter = original.Interpreter; 38 43 } 39 40 public PhenotypicSimilarityCalculator() { }41 42 [StorableConstructor]43 protected PhenotypicSimilarityCalculator(bool deserializing) : base(deserializing) { }44 44 45 45 public override IDeepCloneable Clone(Cloner cloner) { 46 46 return new PhenotypicSimilarityCalculator(this, cloner); 47 47 } 48 49 public PhenotypicSimilarityCalculator() { } 48 50 49 51 public double CalculateSimilarity(ISymbolicExpressionTree t1, ISymbolicExpressionTree t2) {
Note: See TracChangeset
for help on using the changeset viewer.