- Timestamp:
- 01/20/15 20:25:00 (10 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
branches/HeuristicLab.Problems.GrammaticalOptimization/Main/Program.cs
r11801 r11806 24 24 CultureInfo.DefaultThreadCurrentCulture = CultureInfo.InvariantCulture; 25 25 26 //RunDemo();27 RunGridTest();26 RunDemo(); 27 //RunGridTest(); 28 28 } 29 29 … … 61 61 () => new UCTPolicy( 5), 62 62 () => new UCTPolicy( 10), 63 () => new ModifiedUCTPolicy(0.01), 64 () => new ModifiedUCTPolicy(0.05), 65 () => new ModifiedUCTPolicy(0.1), 66 () => new ModifiedUCTPolicy(0.5), 67 () => new ModifiedUCTPolicy(1), 68 () => new ModifiedUCTPolicy(2), 69 () => new ModifiedUCTPolicy( 5), 70 () => new ModifiedUCTPolicy( 10), 63 71 () => new UCB1Policy(), 64 72 () => new UCB1TunedPolicy(), … … 161 169 162 170 private static void RunDemo() { 163 // TODO: move problem instances into a separate folder164 171 // TODO: implement bridge to HL-GP 165 172 // TODO: unify MCTS, TD and ContextMCTS Solvers (stateInfos) … … 170 177 // TODO: warum funktioniert die alte Implementierung von GaussianThompson besser fÃŒr SantaFe als neue? Siehe Vergleich: alte vs. neue implementierung GaussianThompsonSampling 171 178 // TODO: why does GaussianThompsonSampling work so well with MCTS for the artificial ant problem? 172 // TODO: wie kann ich sampler noch vergleichen bzw. was kann man messen um die qualitÀt des samplers abzuschÀtzen (bis auf qualitÀt und iterationen bis zur besten lösung) => ziel schnellere iterationen zu gutem ergebnis173 179 // TODO: research thompson sampling for max bandit? 174 180 // TODO: ausfÃŒhrlicher test von strategien fÃŒr numCorrectPhrases-armed max bandit … … 192 198 193 199 194 var problem = new RoyalSequenceProblem(random, 10, 30, 2, 1, 0);200 //var problem = new RoyalSequenceProblem(random, 10, 30, 2, 1, 0); 195 201 //var phraseLen = 3; 196 202 //var numPhrases = 5; … … 218 224 //var problem = new SymbolicRegressionPoly10Problem(); 219 225 220 //var problem = new SantaFeAntProblem();226 var problem = new SantaFeAntProblem(); 221 227 //var problem = new SymbolicRegressionProblem("Tower"); 222 228 //var problem = new PalindromeProblem(); … … 227 233 //var alg = new MctsSampler(problem, 23, random, 0, new BoltzmannExplorationPolicy(100)); 228 234 //var alg = new MctsSampler(problem, 23, random, 0, new EpsGreedyPolicy(0.1)); 229 var alg = new SequentialSearch(problem, 30, random, 0, 230 new HeuristicLab.Algorithms.Bandits.GrammarPolicies.GenericGrammarPolicy(problem, new EpsGreedyPolicy(0.1), true)); 235 //var alg = new SequentialSearch(problem, 23, random, 0, 236 // new HeuristicLab.Algorithms.Bandits.GrammarPolicies.GenericGrammarPolicy(problem, new ModifiedUCTPolicy(0.1), true)); 237 var alg = new SequentialSearch(problem, 17, random, 0, 238 new HeuristicLab.Algorithms.Bandits.GrammarPolicies.GenericTDPolicy(problem, true)); 231 239 //var alg = new MctsQLearningSampler(problem, sentenceLen, random, 0, null); 232 240 //var alg = new MctsQLearningSampler(problem, 30, random, 0, new EpsGreedyPolicy(0.2)); … … 248 256 globalStatistics.AddSentence(sentence, quality); 249 257 if (iterations % 1000 == 0) { 250 if (iterations % 1000 == 0) Console.Clear();258 if (iterations % 10000 == 0) Console.Clear(); 251 259 Console.SetCursorPosition(0, 0); 252 260 alg.PrintStats();
Note: See TracChangeset
for help on using the changeset viewer.